This paper presents a set of methodologies for the extraction of linear growth and damping rates associated with transversal eigenmodes at screech level frequencies in thermoacoustically noncompact gas turbine combustion systems from time domain data. Knowledge of these quantities is of high technical relevance as a required input for the design of damping devices for high frequency (HF) oscillations. In addition, validation of prediction tools and flame models as well as the thermoacoustic characterization of a given unstable/stable operation point in terms of their distance from the Hopf bifurcation point occurs via the system growth/damping rates. The methodologies solely rely on dynamic measurement data (i.e., unsteady heat release and/or pressure recordings) while avoiding the need of any external excitation (e.g., via sirens), and are thus in principle suitable for the employment on operational engine data. Specifically, the following methodologies are presented: (1) The extraction of pure acoustic damping rates (i.e., without any flame contribution) from oscillatory chemiluminescence and pressure recordings; (2) The obtainment of net growth rates of linearly stable operation points from oscillatory pressure signals; and (3) The identification of net growth rates of linearly unstable operation points from noisy pressure envelope data. The fundamental basis of these procedures is the derivation of appropriate stochastic differential equations (SDE), which admit analytical solutions that depend on the global system parameters. These analytical expressions serve as objective functions against which measured data are fitted to yield the desired growth or damping rates. Bayesian methods are employed to optimize precision and confidence of the fitting results. Numerical test cases given by time domain formulations of the acoustic conservation equations including HF flame models as well as acoustic damping terms are set up and solved. The resulting unsteady pressure and heat release data are then subjected to the proposed identification methodologies to present corresponding proof of principles and grant suitability for employment on real systems.

References

References
1.
Sattelmayer
,
T.
,
2010
, “
Grundlagen der Verbrennung in stationären Gasturbinen
,”
Stationäre Gasturbinen
,
2nd ed.
,
Springer-Verlag
, Berlin, pp.
397
452
.
2.
Rayleigh
,
J.
,
1945
,
The Theory of Sound
, Vol.
1–2
,
Dover Publications
,
Mineola, NY
.
3.
Bechert
,
D.
,
1980
, “
Sound Absorption Caused by Vorticity Shedding, Demonstrated With a Jet Flow
,”
J. Sound Vib.
,
70
(
3
), pp.
389
405
.
4.
Howe
,
M. S.
,
1979
, “
On the Theory of Unsteady High Reynolds Number Flow Through a Circular Aperture
,”
Proc. R. Soc. A
,
366
(
1725
), pp.
205
223
.
5.
Howe
,
M.
,
1980
, “
The Dissipation of Sound at an Edge
,”
J. Sound Vib.
,
70
(
3
), pp.
407
411
.
6.
Dowling
,
A.
,
1997
, “
Nonlinear Self-Excited Oscillations of a Ducted Flame
,”
J. Fluid Mech.
,
346
, pp.
271
290
.
7.
Noiray
,
N.
, and
Schuermans
,
B.
,
2012
, “
Theoretical and Experimental Investigations on Damper Performance for Suppression of Thermoacoustic Oscillations
,”
J. Sound Vib.
,
331
(
12
), pp.
2753
2763
.
8.
Noiray
,
N.
,
2016
, “
Linear Growth Rate Estimation From Dynamics and Statistics of Acoustic Signal Envelope in Turbulent Combustors
,”
ASME J. Eng. Gas Turbines Power
,
139
(
4
), p.
041503
.
9.
Noiray
,
N.
, and
Schuermans
,
B.
,
2013
, “
Deterministic Quantities Characterizing Noise Driven Hopf Bifurcations in Gas Turbine Combustion Chambers
,”
Int. J. Non-Linear Mech.
,
50
, pp.
152
163
.
10.
Lieuwen
,
T.
,
2005
, “
Online Combustor Stability Margin Assessment Using Dynamic Pressure Data
,”
ASME J. Eng. Gas Turbines Power
,
127
(
3
), pp.
478
482
.
11.
Boujo
,
E.
,
Denisov
,
A.
,
Schuermans
,
B.
, and
Noiray
,
N.
,
2016
, “
Quantifying Acoustic Damping Using Flame Chemiluminescence
,”
J. Fluid Mech.
,
808
, pp.
245
257
.
12.
Berger
,
F.
,
Hummel
,
T.
,
Hertweck
,
M.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2017
, “
High-Frequency Thermoacoustic Modulation Mechanisms in Swirl-Stabilized Gas Turbine Combustors—Part I: Experimental Investigation of Local Flame Response
,”
ASME J. Eng. Gas Turbines Power
,
139
(
7
), p.
071501
.
13.
Hummel
,
T.
,
Berger
,
F.
,
Hertweck
,
M.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2017
, “
High-Frequency Thermoacoustic Modulation Mechanisms in Swirl-Stabilized Gas Turbine Combustors—Part II: Modeling and Analysis
,”
ASME J. Eng. Gas Turbines Power
,
139
(
7
), p.
071502
.
14.
Bourgouin
,
J.-F.
,
Durox
,
D.
,
Moeck
,
J. P.
,
Schuller
,
T.
, and
Candel
,
S.
,
2013
, “Self-Sustained Instabilities in an Annular Combustor Coupled by Azimuthal and Longitudinal Acoustic Modes,”
ASME
Paper No. GT2013-95010.
15.
Culick
,
F. E. C.
,
2006
, “Unsteady Motions in Combustion Chambers for Propulsion Systems,” North Atlantic Treaty Organization, Brussels, Belgium, Report No. AC/323(AVT-039)TP/103, RTO AGARDograph
AG-AVT-039
.https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwjXsf-f35rXAhXLTCYKHcv5AfcQFggoMAA&url=http%3A%2F%2Fwww.dtic.mil%2Fget-tr-doc%2Fpdf%3FAD%3DADA466461&usg=AOvVaw0UUxMkWOnID8BlW-R8V5oE
16.
Cveticanin
,
L.
,
1992
, “
Approximate Analytical Solutions to a Class of Non-Linear Equations With Complex Functions
,”
J. Sound Vib.
,
157
(
2
), pp.
289
302
.
17.
Hummel
,
T.
,
Berger
,
F.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2016
, “
Theory and Modeling of Non-Degenerate Transversal Thermoacoustic Limit Cycle Oscillations
,”
International Symposium on Thermoacoustic Instabilities in Gas Turbines and Rocket Engines: Industry Meets Academia
, Munich, Germany, Paper No.
GTRE-038
.https://www.researchgate.net/publication/304570822_Theory_and_Modeling_of_Non-Degenerate_Transversal_Thermoacoustic_Limit_Cycle_Oscillations
18.
Gardiner
,
C.
,
2009
,
Stochastic Methods
,
Springer
,
Berlin
.
19.
Ahlfors
,
L. V.
,
1966
,
Complex Analysis: An Introduction to the Theory of Analytic Functions of One Complex Variable
,
McGraw-Hill
, New York.
20.
Stadlmair
,
N. V.
,
Hummel
,
T.
, and
Sattelmayer
,
T.
,
2017
, “Thermoacoustic Damping Rate Determination From Combustion Noise Using Bayesian Statistics,”
ASME
Paper No. GT2017-63338.
21.
Noiray
,
N.
, and
Schuermans
,
B.
,
2013
, “
On the Dynamic Nature of Azimuthal Thermoacoustic Modes in Annular Gas Turbine Combustion Chambers
,”
Proc. R. Soc. A
,
469
(2151), p. 20120535.
22.
Roberts
,
J. B.
, and
Spanos
,
P. D.
,
1986
, “
Invited Review No. 1 Stochastic Averaging: An Approximate Method of Solving Random Vibration Problems
,”
Int. J. Non-Linear Mech.
,
21
(
2
), pp.
111
134
.
23.
Noiray
,
N.
,
Bothien
,
M. R.
, and
Schuermans
,
B.
,
2011
, “
Investigation of Azimuthal Staging Concepts in Annular Gas Turbines
,”
Combust. Theory Modell.
,
15
(
5
), pp.
585
606
.
24.
Hummel
,
T.
,
Temmler
,
C.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2015
, “
Reduced Order Modeling of Aeroacoustic Systems for Stability Analyses of Thermoacoustically Non-Compact Gas Turbine Combustors
,”
ASME J. Eng. Gas Turbines Power
,
138
(
5
), p.
051502
.
25.
Hummel
,
T.
,
Hammer
,
K.
,
Romero
,
P.
,
Schuermans
,
B.
, and
Sattelmayer
,
T.
,
2017
, “
Low-Order Modeling of Nonlinear High-Frequency Transversal Thermoacoustic Oscillations in Gas Turbine Combustors
,”
ASME J. Eng. Gas Turbines Power
,
139
(
7
), p.
071503
.
You do not currently have access to this content.