Over the last years, aero-engines are progressively evolving toward design concepts that permit improvements in terms of engine safety, fuel economy, and pollutant emissions. With the aim of satisfying the strict NOx reduction targets imposed by ICAO-CAEP, lean burn technology is one of the most promising solutions even if it must face safety concerns and technical issues. Hence, a depth insight on lean burn combustion is required, and computational fluid dynamics can be a useful tool for this purpose. In this work, a comparison in large eddy simulation (LES) framework of two widely employed combustion approaches like the artificially thickened flame (ATF) and the flamelet generated manifold (FGM) is performed using ANSYS fluent v16.2. Two literature test cases with increasing complexity in terms of geometry, flow field, and operating conditions are considered. First, capabilities of FGM are evaluated on a single swirler burner operating at ambient pressure with a standard pressure atomizer for spray injection. Then, a second test case, operated at 4 bar, is simulated. Here, kerosene fuel is burned after an injection through a prefilming airblast atomizer within a corotating double swirler. Obtained comparisons with experimental results show different capabilities of ATF and FGM in modeling the partially premixed behavior of the flame and provide an overview of the main strengths and limitations of the modeling strategies under investigation.

References

References
1.
Gicquel
,
L. Y. M.
,
Staffelbach
,
G.
, and
Poinsot
,
T.
,
2012
, “
Large Eddy Simulations of Gaseous Flames in Gas Turbine Combustion Chambers
,”
Prog. Energy Combust. Sci.
,
38
(
6
), pp. 782–817.
2.
Jones
,
W. P.
,
Marquis
,
A. J.
, and
Vogiatzaki
,
K.
,
2014
, “
Large-Eddy Simulation of Spray Combustion in a Gas Turbine Combustor
,”
Combust. Flame
,
161
(
1
), pp.
222
239
.
3.
Boudier
,
G.
,
Gicquel
,
L. Y. M.
, and
Poinsot
,
T. J.
,
2008
, “
Effects of Mesh Resolution on Large Eddy Simulation of Reacting Flows in Complex Geometry Combustors
,”
Combust. Flame
,
155
(
1–2
), pp.
196
214
.
4.
Sheen
,
D.
,
1993
, “
Swirl-Stabilised Turbulent Spray Flames in an Axisymmetric Model Combustor
,”
Ph.D. thesis
, Imperial College, London.http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.445249
5.
Freitag
,
S.
,
Meier
,
U.
,
Heinze
,
J.
,
Behrendt
,
T.
, and
Hassa
,
C.
,
2010
, “
Measurement of Initial Conditions of a Kerosene Spray From a Generic Aeroengine Injector at Elevated Pressure
,”
23rd Annual Conference on Liquid Atomization and Spray Systems (ILASS)
, Brno, Czech Republic, Sept. 6–9.
6.
Meier
,
U.
,
Heinze
,
J.
,
Freitag
,
S.
, and
Hassa
,
C.
,
2012
, “
Spray and Flame Structure of a Generic Injector at Aeroengine Conditions
,”
ASME J. Gas Turbines Power
,
134
(
3
), p.
031503
.
7.
Lilly
,
D. K.
,
1992
, “
A Proposed Modification of the Germano Subgrid-Scale Closure Model
,”
Phys. Fluids
,
4
(
3
), pp.
633
635
.
8.
Morsi
,
S. A.
, and
Alexander
,
A. J.
,
1972
, “
An Investigation of Particle Trajectories in Two-Phase Flow Systems
,”
J. Fluid Mech.
,
55
(
02
), pp.
193
208
.
9.
Joseph
,
D.
,
Belanger
,
J.
, and
Beavers
,
G. S.
,
1999
, “
Breakup of a Liquid Drop Suddenly Exposed to a High-Speed Airstream
,”
Int. J. Multiphase Flow
,
25
(
6
), pp.
1263
1303
.
10.
Abramzon
,
B.
, and
Sirignano
,
W. A.
,
1989
, “
Droplet Vaporization Model for Spray Combustion Calculations
,”
Int. J. Heat Mass Transfer
,
32
(
9
), pp.
1605
1618
.
11.
Sazhin
,
S. S.
,
2006
, “
Advanced Models of Fuel Droplet Heating and Evaporation
,”
Prog. Energy Combust. Sci.
,
32
(
2
), pp.
162
214
.
12.
Gosman
,
A. D.
, and
Ioannides
,
E.
,
1983
, “
Aspects of Computer Simulation of Liquid-Fueled Combustors
,”
J. Energy
,
7
(6), pp. 482–490.
13.
Rachner
,
M.
,
1998
, “
Die Stoffeigenschaften von Kerosin Jet A-1
,” DLR-Institut für Antriebstechnik, Köln-Porz, Germany, Technical Report.
14.
Knudsen
,
E.
, and
Pitsch
,
H.
,
2010
, “
Large-Eddy Simulation for Combustion Systems: Modeling Approaches for Partially Premixed Flows
,”
Open Thermodyn. J.
,
4
(
1
), pp.
76
85
.
15.
Colin
,
O.
,
Ducros
,
F.
,
Veynante
,
D.
, and
Poinsot
,
T.
,
2000
, “
A Thickened Flame Model for Large Eddy Simulations of Turbulent Premixed Combustion
,”
Phys. Fluids
,
12
(
7
), pp.
1843
1863
.
16.
Wang
,
G.
,
Boileau
,
M.
, and
Veynante
,
D.
,
2011
, “
Implementation of a Dynamic Thickened Flame Model for Large Eddy Simulations of Turbulent Premixed Combustion
,”
Combust. Flame
,
158
(
11
), pp.
2199
2213
.
17.
Zimont
,
V.
,
Polifke
,
W.
,
Bettelini
,
M.
, and
Weisenstein
,
W.
,
1998
, “
An Efficient Computational Model for Premixed Turbulent Combustion at High Reynolds Numbers Based on a Turbulent Flame Speed Closure
,”
ASME J. Gas Turbines Power
,
120
(
3
), pp.
526
532
.
18.
Legier
,
J. P.
,
Poinsot
,
T.
, and
Veynante
,
D.
,
2000
, “
Dynamically Thickened Flame LES Model for Premixed and Non-Premixed Turbulent Combustion
,”
Summer Program of Center for Turbulence Research, Stanford, CA
, pp.
157
168
.
19.
Selle
,
L.
,
Lartigue
,
G.
,
Poinsot
,
T.
,
Koch
,
R.
,
Schildmacher
,
K. U.
,
Krebs
,
W.
,
Prade
,
B.
,
Kaufmann
,
P.
, and
Veynante
,
D.
,
2004
, “
Compressible Large Eddy Simulation of Turbulent Combustion in Complex Geometry on Unstructured Meshes
,”
Combust. Flame
,
137
(
4
), pp.
489
505
.
20.
Donini
,
A.
,
Bastiaans
,
R. J. M.
,
Van Oijen
,
J. A.
, and
de Goey
,
L. P. H.
,
2015
, “
The Implementation of Five-Dimensional FGM Combustion Model for the Simulation of a Gas Turbine Model Combustor
,”
ASME
Paper No. GT2015-42037.
21.
ANSYS, 2016, “
ANSYS Fluent 16 Theory Guide
,” ANSYS Inc., Canonsburg, PA.
22.
Sirjean, B., Dames, E., Sheen, D. A., and Wang, H., 2009, “
Simplified Chemical Kinetic Models for High-Temperature Oxidation of C1 to C12
,” 6th U.S. National Combustion Meeting, Ann Arbor, MI, May 17–20, Paper No.
23.F1
.https://web.stanford.edu/group/haiwanglab/JetSurF/JetSurF1.0/Reduced%20Model/23F1.pdf
23.
Westbrook
,
C. K.
, and
Dryer
,
F. L.
,
1981
, “
Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuels in Flames
,”
Combust. Sci. Technol.
,
27
(
1–2
), pp.
31
43
.
24.
Moghaddas
,
A.
,
Eisazadeh-Far
,
K.
, and
Metghalchi
,
H.
,
2012
, “
Laminar Burning Speed Measurement of Premixed n-Decane/Air Mixtures Using Spherically Expanding Flames at High Temperatures and Pressures
,”
Combust. Flame
,
159
(
4
), pp.
1437
1443
.
25.
Blint
,
R. J.
,
1986
, “
The Relationship of the Laminar Flame Width to Flame Speed
,”
Combust. Sci. Technol.
,
49
(
1–2
), pp.
79
92
.
26.
Jones
,
W. P.
,
Lyra
,
S.
, and
Navarro-Martinez
,
S.
,
2012
, “
Numerical Investigation of Swirling Kerosene Spray Flames Using Large Eddy Simulation
,”
Combust. Flame
,
159
(
4
), pp.
1539
1561
.
27.
Pope
,
S. B.
,
2004
, “
Ten Questions Concerning the Large-Eddy Simulation of Turbulent Flows
,”
New J. Phys.
,
6
, p. 35.
28.
Fossi
,
A.
,
deChamplain
,
A.
,
Paquet
,
B.
,
Kalla
,
S.
, and
Bergthorson
,
J. M.
,
2015
, “
Scale-Adaptive and Large Eddy Simulations of a Turbulent Spray Flame in a Scaled Swirl-Stabilized Gas Turbine Combustor Using Strained Flamelets
,”
ASME
Paper No. GT2015-42535.
29.
Smith
,
T. F.
,
Shen
,
Z. F.
, and
Friedman
,
J. N.
,
1982
, “
Evaluation of Coefficients for the Weighted Sum of Gray Gases Model
,”
ASME J. Heat Transfer
,
104
(
4
), pp.
602
608
.
30.
Puggelli
,
S.
,
Bertini
,
D.
,
Mazzei
,
L.
, and
Andreini
,
A.
,
2016
, “
Assessment of Scale-Resolved Computational Fluid Dynamics Methods for the Investigation of Lean Burn Spray Flames
,”
ASME J. Gas Turbines Power
,
139
(
2
), p.
021501
.
31.
Nakod
,
P.
,
Yadav
,
R.
,
Rajeshirke
,
P.
, and
Orsino
,
S.
,
2014
, “
A Comparative Computational Fluid Dynamics Study on Flamelet-Generated Manifold and Steady Laminar Flamelet Modeling for Turbulent Flames
,”
ASME J. Gas Turbines Power
,
136
(
8
), p.
081504
.
32.
Nakod
,
P.
, and
Yadav
,
R.
,
2015
, “
Numerical Computation of a Turbulent Lifted Flame Using Flamelet Generated Manifold With Different Progress Variable Definitions
,”
ASME
Paper No. GTINDIA2015-1406.
33.
Andreini
,
A.
,
Bianchini
,
C.
,
Caciolli
,
G.
,
Facchini
,
B.
,
Giusti
,
A.
, and
Turrini
,
F.
,
2014
, “
Multi-Coupled Numerical Analysis of Advanced Lean Burn Injection Systems
,”
ASME
Paper No. GT2014-26808.
You do not currently have access to this content.