Very high bypass ratio turbofans with large fan tip diameter are an effective way of improving the propulsive efficiency of civil aero-engines. Such engines, however, require larger and heavier nacelles, which partially offset any gains in specific fuel consumptions. This drawback can be mitigated by adopting thinner walls for the nacelle and by shortening the intake section. This binds the success of very high bypass ratio technologies to the problem of designing an intake with thin lips and short diffuser section, which is well matched to a low speed fan. Consequently, the prediction of the mutual influence between the fan and the intake flow represents a crucial step in the design process. Considerable effort has been devoted in recent years to the study of models for the effects of the fan on the lip stall characteristics and the operability of the whole installation. The study of such models is motivated by the wish to avoid the costs incurred by full, three-dimensional (3D) computational fluid dynamics (CFD) computations. The present contribution documents a fan model for fan–intake computations based on the solution of the double linearization problem for unsteady, transonic flow past a cascade of aerofoils with finite mean load. The computation of the flow in the intake is reduced to a steady problem, whereas the computation of the flow in the fan is reduced to one steady problem and a set of solutions of the linearized model in the frequency domain. The nature of the approximations introduced in the fan representation is such that numerical solutions can be computed inexpensively, while the main feature of the flow in the fan passage, namely the shock system and an approximation of the unsteady flow encountered by the fan are retained. The model is applied to a well-documented test case and compares favorably with much more expensive 3D, time-domain computations.

References

1.
Peters
,
A.
,
Spakovszky
,
Z. S.
,
Lord
,
W. K.
, and
Rose
,
B.
,
2015
, “
Ultrashort Nacelles for Low Fan Pressure Ratio Propulsors
,”
ASME J. Turbomach.
,
137
(
2
), p.
021001
.
2.
Hodder, B. K., 1981, “
An Investigation of Engine Influence on Inlet Performance
,” NASA-Ames Research Center, Mountain View, CA, Technical Report No.
NASA-CR-166136
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19810021546.pdf
3.
Larkin
,
M. J.
, and
Schweiger
,
P. S.
,
1992
, “Ultra High Bypass Nacelle Aerodynamics: Inlet Flow-Through High Angle of Attack Distortion Test,” NASA Lewis Research Center, Cleveland, OH, Technical Report No.
NASA-CR-189149
.https://ntrs.nasa.gov/search.jsp?R=19920021055
4.
Boldman
,
D. R.
,
Iek
,
C.
,
Hwang
,
D. P.
,
Larkin
,
M.
, and
Schweiger
,
P.
,
1993
, “Effect of a Rotating Propeller on the Separation Angle of Attack and Distortion in Ducted Propeller Inlets,”
AIAA
Paper No. 93-0017.
5.
Carnevale
,
M.
,
Wang
,
F.
,
Green
,
J.
, and
Mare
,
L. D.
,
2016
, “
Lip Stall Suppression in Powered Intakes
,”
J. Propul. Power
,
32
(
1
), pp.
161
170
.
6.
Cao
,
T.
,
Vadlamani
,
N. R.
,
Tucker
,
P. G.
,
Smith
,
A. R.
,
Slaby
,
M.
, and
Sheaf
,
C. T.
,
2017
, “
Fan–Intake Interaction Under High Incidence
,”
ASME J. Eng. Gas Turbines Power
,
139
(
4
), p.
041204
.
7.
Hawthorne
,
W.
, and
Horlock
,
J.
,
1962
, “
Actuator Disc Theory of the Incompressible Flow in Axial Compressors
,”
Proc. Inst. Mech. Eng.
,
176
(
1
), pp.
789
814
.
8.
Kaji
,
S.
, and
Okazaki
,
T.
,
1970
, “
Propagation of Sound Waves Through a Blade Row—II: Analysis Based on the Acceleration Potential Method
,”
J. Sound Vib.
,
11
(
3
), pp.
355
375
.
9.
Hynes
,
T.
,
1997
, “
The Simulation of Turbomachinery Blade Rows in Asymmetric Flow Using Actuator Disks
,”
ASME J. Turbomach.
,
119
(
4
), pp. 723–732.
10.
Longley
,
J. P.
,
1997
, “Calculating the Flowfield Behaviour of High-Speed Multi-Stage Compressors,”
ASME
Paper No. 97-GT-468.
11.
Marble
,
F. E.
,
1964
, “
Three-Dimensional Flow in Turbomachines
,”
Aerodynamics of Turbines and Compressors
(High Speed Aerodynamics and Jet Propulsion), Vol. 10, Princeton University Press, Princeton, NJ, pp. 83–166.
12.
Gong
,
Y.
,
Tan
,
C. S.
,
Gordon
,
K. A.
, and
Greitzer
,
E. M.
,
1998
, “A Computational Model for Short Wavelength Stall Inception and Development in Multi-Stage Compressors,”
ASME
Paper No. 98-GT-476.
13.
Defoe
,
J.
,
Narkaj
,
A.
, and
Spakovszky
,
Z. S.
,
2009
, “A Novel MPT Noise Methodology for Highly-Integrated Propulsion Systems With Inlet Flow Distortion,”
AIAA
Paper No. 2009-3366.
14.
Thollet
,
W.
,
Dufour
,
G.
,
Carbonneau
,
X.
, and
Blanc
,
F.
,
2016
, “Assessment of Body Force Methodologies for the Analysis of Intake-Fan Aerodynamic Interactions,”
ASME
Paper No. GT2016-57014.
15.
Cao
,
T.
,
Hield
,
P.
, and
Tucker
,
P. G.
,
2016
, “Hierarchical Immersed Boundary Method With Smeared Geometry,”
AIAA
Paper No. 2016-2130.
16.
Pullan
,
G.
, and
Adamczyk
,
J.
,
2016
, “Filtering Mixing Planes for Low Reduced Frequency Analysis of Turbomachines,”
ASME
Paper No. GT2016-57380.
17.
He
,
L.
, and
Ning
,
W.
,
1998
, “
Efficient Approach for Analysis of Unsteady Viscous Flows in Turbomachines
,”
AIAA J.
,
36
(
11
), pp.
2005
2012
.
18.
Hall
,
K. C.
,
Thomas
,
J. P.
, and
Clark
,
W. S.
,
2002
, “
Computation of Unsteady Nonlinear Flows in Cascades Using a Harmonic Balance Technique
,”
AIAA J.
,
40
(
5
), pp.
879
886
.
19.
He
,
L.
,
2013
, “
Special Issue on Fourier-Based Method Development and Application
,”
Int. J. Comput. Fluid Dyn.
,
27
(
2
), p.
51
.
20.
Carnevale
,
M.
,
Wang
,
F.
, and
di Mare
,
L.
,
2016
, “
Low Frequency Distortion in Civil Aero-Engine Intake
,”
ASME J. Eng. Gas Turbines Power
,
139
(
4
), p.
041203
.
21.
Aris
,
R.
,
2012
,
Vectors, Tensors and the Basic Equations of Fluid Mechanics
, Dover Publication, Mineola, NY.
22.
Wang
,
F.
, and
Mare
,
L.
,
2016
, “
Hybrid Meshing Using Constrained Delaunay Triangulation for Viscous Flow Simulations
,”
Int. J. Numer. Methods Eng.
,
108
(
13
), pp.
1667
1685
.
23.
Wang
,
F.
, and
Mare
,
L.
,
2017
, “
Mesh Generation for Turbomachinery Blade Passages With Three-Dimensional Endwall Features
,”
J. Propul. Power
,
33
(6), pp. 1459–1472.
24.
Di Mare
,
L.
,
Kulkarni
,
D. Y.
,
Wang
,
F.
,
Romanov
,
A.
,
Ramar
,
P. R.
, and
Zachariadis
,
Z. I.
,
2011
, “Virtual Gas Turbines: Geometry and Conceptual Description,”
ASME
Paper No. GT2011-46437.
25.
Wang
,
F.
,
Carnevale
,
M.
,
Lu
,
G.
,
di Mare
,
L.
, and
Kulkarni
,
D.
,
2016
, “Virtual Gas Turbine: Pre-Processing and Numerical Simulations,”
ASME
Paper No. GT2016-56227.
26.
Carnevale
,
M.
,
Green
,
J. S.
, and
Di Mare
,
L.
,
2014
, “Numerical Studies Into Intake Flow for Fan Forcing Assessment,”
ASME
Paper No. GT2014-25772.
28.
Liou
,
M.-S.
, and
Steffen
,
C. J.
, Jr.
,
1991
, “A New Flux Splitting Scheme,”
J. Comput. Phys.
,
107
(1), pp. 23–39.
29.
Liou
,
M.-S.
,
1996
, “
A Sequel to AUSM: AUSM+
,”
J. Comput. Phys.
,
129
(
2
), pp.
364
382
.
30.
Choi
,
Y.-H.
, and
Merkle
,
C. L.
,
1993
, “
The Application of Preconditioning in Viscous Flows
,”
J. Comput. Phys.
,
105
(
2
), pp.
207
223
.
31.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
32.
Wilcox
,
D. C.
,
1988
, “
Reassessment of the Scale-Determining Equation for Advanced Turbulence Models
,”
AIAA J.
,
26
(
11
), pp.
1299
1310
.
33.
Hadade
,
I.
, and
Mare
,
L.
,
2014
, “
Exploiting SIMD and Thread-Level Parallelism in Multiblock CFD
,”
29th International Conference on Supercomputing
(
ISC
), Leipzig, Germany, June 22–26, pp.
410
419
.
34.
Hadade
,
I.
, and
di Mare
,
L.
,
2016
, “
Modern Multicore and Manycore Architectures: Modelling, Optimisation and Benchmarking a Multiblock CFD Code
,”
Comput. Phys. Commun.
,
205
, pp.
32
47
.
You do not currently have access to this content.