Enabling high overall pressure ratios (OPR), wave rotors, and piston concepts (PCs) seem to be solutions surpassing gas turbine efficiency. Therefore, a comparison of a wave rotor and three PCs relative to a reference gas turbine is offered. The PPCs include a Wankel, a two-stroke reciprocating engine, and a free piston. All concepts are investigated with and without intercooling. An additional combustion chamber (CC) downstream the piston engine is investigated, too. The shaft power chosen corresponds to large civil turbofans. Relative to the reference gas turbine, a maximum efficiency increase of 11.2% for the PCs and 9.8% for the intercooled wave rotor is demonstrated. These improvements are contrasted by a 5.8% increase in the intercooled reference gas turbine and a 4.2% increase due to improved gas turbine component efficiencies. Intercooling the higher component efficiency gas turbine leads to a 9.8% efficiency increase. Furthermore, the study demonstrates the high difference between intercooler and piston engine weight and a conflict between PC efficiency and chamber volume, highlighting the need for extreme lightweight design in any piston engine solution. Improving piston engine technology parameters is demonstrated to lead to higher efficiency, but not to a chamber volume reduction. Heat loss in the piston engines is identified as the major efficiency limiter.

References

References
1.
Teyssier
,
N.
,
2012
, “
Global Air Transport Outlook
,”
3
7th
FAA Aviation Forecast Conference
, FAA, Washington, DC, Mar. 8–9.
2.
IATA
,
2013
, “
Reducing Emissions From Aviation Through Carbon-Neutral Growth From 2020
,”
38th International Civil Aviation Organization Assembly
, Montreal, QC, Canada, Sept. 24–Oct. 4.http://www.atag.org/component/downloads/downloads/230.html
3.
ACARE,
2011
,”
Flightpath 2050—Europe’s Vision for Aviation
,”
Report of the High Level Group on Aviation Research, European Commission
, Brussels, Belgium,
Report
.https://ec.europa.eu/transport/sites/transport/files/modes/air/doc/flightpath2050.pdf
4.
Kurzke
,
J.
,
2009
, “
Fundamental Differences Between Conventional and Geared Turbofans
,”
ASME
Paper No. GT2009-59745.
5.
Bellocq
,
P.
,
Garmendia
,
I.
, and
Sethi
,
V.
,
2015
, “
Preliminary Design Assessments of Pusher Geared Counter-Rotating Open Rotors—Part I: Low Pressure System Design Choices, Engine Preliminary Design Philosophy and Modelling Methodology
,”
ASME
Paper No. GT2015-43812.
6.
Bellocq
,
P.
,
Garmendia
,
I.
, and
Sethi
,
V.
,
2015
, “
Preliminary Design Assessments of Pusher Geared Counter-Rotating Open Rotors—Part II: Impact of Low Pressure System Design on Mission Fuel Burn, Certification Noise and Emissions
,”
ASME
Paper No. GT2015-43816.
7.
Van Zante
,
D. E.
,
2015
, “
Progress in Open Rotor Research: A U.S. Perspective
,”
ASME
Paper No. GT2015-42203.
8.
Bellocq
,
P.
,
Garmendia
,
I.
,
Sethi
,
V.
,
Patin
,
A.
,
Capodanno
,
S.
, and
Rodriguez Lucas
,
F.
,
2016
, “
Multidisciplinary Assessment of the Control of the Pusher Geared Open Rotor—Part I: Zero-Dimensional Performance Model for Counter-Rotating Propellers
,”
ASME J. Eng. Gas Turbines Power
,
138
(7), p.
072602
.
9.
Bellocq
,
P.
,
Garmendia
,
I.
,
Sethi
,
V.
,
Patin
,
A.
,
Capodanno
,
S.
, and
Rodriguez Lucas
,
F.
,
2016
, “
Multidisciplinary Assessment of the Control of the Pusher Geared Open Rotor—Part II: Impact on Fuel Consumption, Engine Weight, Certification Noise, and NOx Emissions
,”
ASME J. Eng. Gas Turbines Power
,
138
(7), p.
072603
.
10.
Steiner
,
H.-J.
,
Seitz
,
A.
,
Wieczorek
,
K.
,
Plötner
,
K.
,
Isikveren
,
A.
, and
Hornung
,
M.
,
2012
, “
Multi-Disciplinary Design and Feasibility Study of Distributed Propulsion Systems
,”
2
8th
International Congress of the Aeronautical Sciences
(
ICAS
), Brisbane, Australia, Sept. 23–28.http://www.icas.org/ICAS_ARCHIVE/ICAS2012/PAPERS/803.PDF
11.
Laskaridis
,
P.
,
Valencia
,
E.
,
Kirner
,
R.
, and
Wei
,
T. J.
,
2015
, “
Assessment of Distributed Propulsion Systems Used With Different Aircraft Configurations
,”
AIAA
Paper No. 2015-4029.
12.
Wick
,
A. T.
,
Hooker
,
J. R.
, and
Hardin
,
C. J.
,
2015
, “
Integrated Aerodynamic Benefits of Distributed Propulsion
,”
AIAA
Paper No. 2015-1500.
13.
Hall
,
C. A.
, and
Crichton
,
D.
,
2005
, “
Engine and Installation Configurations for a Silent Aircraft
,”
17th International Symposium on Air Breathing Engines (ISABE), Conference
, ISABE, Munich, Germany, Paper No.
ISABE-2005-1164
.http://silentaircraft.org/object/download/1928/doc/ISABE_2005_1164.pdf
14.
de la Rosa Blanco
,
E.
,
Hall
,
C. A.
, and
Crichton, D.
,
2007
, “
Challenges in the Silent Aircraft Engine Design
,”
AIAA
Paper No. 2007-454.
15.
Tong
,
M. T.
,
Jones
,
S. M.
, and
Haller
,
W. J.
,
2009
, ”Engine Conceptual Design Studies for a Hybrid Wing Body Aircraft,” NASA Glenn Research Center, Cleveland, OH, Technical Report No.
NASA/TM-2009-215680
.https://ntrs.nasa.gov/search.jsp?R=20090042817
16.
Casado
,
H.
,
Cristobal
,
E.
,
Lorido
,
A.
, and
Ramsden
,
K. W.
,
2002
, “
A Tip-Turbine Driven Propulsion Fan Concept
,”
ASME
Paper No. GT2002-30651.
17.
Laskaridis
,
P.
,
2015
, “
Application of Distributed Propulsion Concept on Different Aircraft Configurations
,”
22nd International Symposium on Air Breathing Engines
(ISABE), Phoenix, AZ, Oct. 25–30, Paper No.
ISABE-2015-20284
.https://drc.uc.edu/bitstream/handle/2374.UC/745829/ISABE2015_CS%26A_Panos%20Laskaridis_76_MANUSCRIPT_20284.pdf?sequence=2
18.
Chengyuan
,
L.
,
Doulgeris
,
G.
,
Laskaridis
,
P.
, and
Singh
,
R.
,
2012
, “
Turboelectric Distributed Propulsion System Modelling for Hybrid-Wing-Body Aircraft
,”
AIAA
Paper No. 2012-3700.
19.
Stoll
,
A. M.
,
Bevirt
,
J.
,
Moore
,
M. D.
,
Fredericks
,
W. J.
, and
Borer
,
N. K.
,
2014
, “
Drag Reduction Through Distributed Electric Propulsion
,”
AIAA
Paper No. 2014-2851.
20.
Schmitz
,
O.
, and
Hornung
,
M.
,
2013
, “
Unified Applicable Propulsion System Performance Metrics
,”
ASME J. Eng. Gas Turbines Power
,
135
(
11
), p.
111201
.
21.
McDonald
,
C. F.
,
Massardo
,
A. F.
,
Rodgers
,
C.
, and
Stone
,
A.
,
2008
, “
Recuperated Gas Turbine Aeroengines—Part I: Early Development Activities
,”
Aircr. Eng. Aerosp. Technol.
,
80
(
2
), pp.
139
157
.
22.
McDonald
,
C. F.
,
Massardo
,
A. F.
,
Rodgers
,
C.
, and
Stone
,
A.
,
2008
, “
Recuperated Gas Turbine Aeroengines—Part II: Enigne Design Studies following Early Development Testing
,”
Aircr. Eng. Aerosp. Technol.
,
80
(
3
), pp.
280
294
.
23.
McDonald
,
C. F.
,
Massardo
,
A. F.
,
Rodgers
,
C.
, and
Stone
,
A.
,
2008
, “
Recuperated Gas Turbine Aeroengines—Part III: Enigne Concepts for Reduced Emissions, Lower Fuel Consumption, and Noise Abatement
,”
Aircr. Eng. Aerosp. Technol.
,
80
(
4
), pp.
408
426
.
24.
Camilleri
,
W.
,
Anselmi
,
E.
,
Sethi
,
V.
,
Laskaridis
,
P.
,
Rolt
,
A.
, and
Cobas
,
P.
,
2014
, “
Performance Characteristics and Optimisation of a Geared Intercooled Reversed Flow Core Engine
,”
Proc. Inst. Mech. Eng., Part G
,
229
(2), pp. 269–279.
25.
Kyprianidis
,
K. G.
,
Rolt
,
A. M.
, and
Grönstedt
,
T.
,
2013
, “
Multi-Disciplinary Analysis of a Geared Fan Intercooled Core Aero-Engine
,”
ASME
Paper No. GT2013-95474.
26.
Kyprianidis
,
K. G.
, and
Rolt
,
A. M.
,
2014
, “
On the Optimisation of a Geared Fan Intercooled Core Engine Design
,”
ASME
Paper No. GT2014-26064.
27.
Kyprianidis
,
K. G.
, and
Rolt
,
A. M.
,
2015
, “
On the Optimization of a Geared Fan Intercooled Core Engine Design
,”
ASME J. Eng. Gas Turbines Power
,
137
(4), p.
041201
.
28.
Zhao
,
X.
,
Thulin
,
O.
, and
Gronstedt
,
T.
,
2015
, “
First and Second Law Analysis of Intercooled Turbofan Engine
,”
ASME
Paper No. GT2015-43187.
29.
Boggia
,
S.
, and
Rüd
,
K.
,
2005
, “
Intercooled Recuperated Gas Turbine Engine Concept
,”
AIAA
Paper No. 2005-4192.
30.
Gonser
,
H.
,
2008
, ”
Untersuchungen zum Einsatz von Wärmetauschern in zivilen Turboflugtriebwerken
,” Ph.D. dissertation, Institute of Aircraft Propulsion Systems, University of Stuttgart, Stuttgart, Germany.
31.
Lei
,
X.
,
Kyprianidis
,
K.
, and
Grönstedt
,
T.
,
2011
, “
Analysis of an Intercooled Recuperated Aero-Engine
,” 20th International Symposium on Air Breathing Engines
(ISABE), Gothenburg, Sweden, Sept. 12–16, Paper No.
ISABE-2011-1318
.http://publications.lib.chalmers.se/publication/140734-analysis-of-an-intercooled-recuperated-aero-engine
32.
Nalim
,
R. M.
,
2002
, “
Thermodynamic Limits of Work and Pressure Gain in Combustion and Evapuration Process
,”
J. Propul. Power
,
18
(
6
), pp.
1176
1182
.
33.
Akbari
,
P.
,
Nalim
,
R.
, and
Mueller
,
N.
,
2006
, “
A Review of Wave Rotor Technology and Its Applications
,”
ASME J. Eng. Gas Turbines Power
,
128
(4), pp.
717
735
.
34.
Snyder
,
P. H.
, and
Nalim
,
M. R.
,
2012
, “
Pressure Gain Combustion Application to Marine and Industrial Gas Turbines
,”
ASME
Paper No. GT2012-69886.
35.
Hutchins
,
T. E.
, and
Metghalchi
,
M.
,
2003
, “
Energy and Exergy Analyses of the Pulse Detonation Engine
,”
ASME J. Eng. Gas Turbines Power
,
125
(4), pp.
1075
1080
.
36.
Goldmeer
,
J.
,
Tangirala
,
V.
, and
Dean
,
A.
,
2008
, “
System-Level Performance Estimation of a Pulse Detonation Based Hybrid Engine
,”
ASME J. Eng. Gas Turbines Power
,
130
(1), p.
011201
.
37.
Schmidt
,
F.
,
Staudacher
,
S.
, and
Weigand
,
B.
,
2013
, “
Generalized Analysis of the Potential of Thermodynamic Cycles for Future Aircraft Propulsion Systems
,”
German Aerospace Congress
, Stuttgart, Germany, Sept. 10–12, Paper No. DLRK2013-301350.
38.
Grönstedt
,
T.
,
Irannezhad
,
M.
,
Lei
,
X.
,
Thulin
,
O.
, and
Lundbladh
,
A.
,
2014
, “
First and Second Law Analysis of Future Aircraft Engines
,”
ASME J. Eng. Gas Turbines Power
,
136
(3), p.
031202
.
39.
Schmidt
,
F.
, and
Staudacher
,
S.
,
2015
, “
Generalized Thermodynamic Assessment of Concepts for Increasing the Efficiency of Civil Aircraft Propulsion Systems
,”
ASME
Paper No. GT2015-42447.
40.
Flight Global,
1954
, “
Napier Nomad—An Engine of Outstanding Efficiency
,”
Flight Global
, Sutton, UK, pp.
543
552
.
41.
Civinskas
,
K. C.
, and
Kraft
,
G. A.
,
1976
, ”
Preliminary Evaluation of a Turbine/Rotary Combustion Compound Engine for a Subsonic Transport
,” NASA Lewis Research Center, Cleveland, OH, Technical Report No.
TM X-71906
.https://ntrs.nasa.gov/search.jsp?R=19760014112
42.
Castor
,
J. G.
,
1983
, “
Compound Cycle Turbofan Engine
,”
AIAA
Paper No. 1983-1338.
43.
Willis
,
E. A.
, and
Wintucky
,
W. T.
,
1984
, “
An Overview of NASA Intermittent Combustion Engine Research
,”
AIAA
Paper No. 1984-1393.
44.
Andre
,
W. L.
,
1985
, “
Aircraft Preliminary Design Comparison of Advanced Compound Engines With Advanced Turbine Engines for Helicopter Applications
,”
AIAA
Paper No. 1985-1276.
45.
Castor
,
J.
,
Martin
,
J.
, and
Bradley
,
C.
,
1987
, “
Compound Cycle Engine for Helicopter Application
,” National Aeronautics and Space Administration, Cleveland, OH, Technical Report No.
NASA-CR-180824
.https://ntrs.nasa.gov/search.jsp?R=19930001160&hterms=Compound+Cycle+Engine+Helicopter+Application&qs=N%3D0%26Ntk%3DAll%26Ntt%3DCompound%2520Cycle%2520Engine%2520for%2520Helicopter%2520Application%26Ntx%3Dmode%2520matchallpartial
46.
Bergbauer
,
F.
,
1989
, “
Verbesserung von Kraftstoffverbrauch und Betriebsverhalten von Verbrennungsmotoren durch Turbocompounding
,” Ph.D. dissertation, Technical University of Munich, Munich, Germany.
47.
Bues
,
J.
,
1988
, “
Thermodynamische Untersuchung zu Turbo-Compound-Verfahren
,” VDI, Düsseldorf, Germany.
48.
Whurr
,
J.
,
1995
, “
Aircraft Compound Cycle Propulsion Engine
,” Rolls-Royce Plc, Westhampnett, UK, US Patent No.
US5692372 A
.https://www.google.co.in/patents/US5692372
49.
Robinson
,
J.
,
2006
, “
Gasturbinentriebwerk
,” MTU Aero Engines, Munich, Germany, Patent No. DE 10 2006 015 928 A1.
50.
Klingels
,
H.
,
2013
, “
Wärmekraftmaschine mit Freikolbenverdichter
,” MTU Aero Engines, Munich, Germany, Patent No. DE 10 2012 206 123 A1.
51.
Gauvreau
,
J.-G.
, and
Gagnon-Martin
,
D.
,
2013
, “
Wankel Engine Rotor
,” Pratt & Whitney Canada Corp., Longueuil, QC, Canada, Patent No. EP
2735701A1
https://encrypted.google.com/patents/EP2735701A1?cl=fi.
52.
Panting
,
J. R.
, and
Pullen
,
K. R.
,
2000
, “
Thermodynamic Studies of a Novel Aeroengine Concept
,”
Proc. Inst. Mech. Eng., Part G
,
214
(2), pp.
71
83
.
53.
Kaiser
,
S.
,
Seitz
,
A.
,
Donnerhack
,
S.
, and
Lundbladh
,
A.
,
2015
, “
A Composite Cycle Engine Concept With Hecto-Pressure Ratio
,”
AIAA
Paper No. 2015-4028.
54.
Nickl
,
M.
,
Kaiser
,
S.
,
Seitz
,
A.
, and
Hornung
,
M.
,
2016
, “
Performance Modeling of a Composite Cycle Engine With Rotary Engine
,”
German Aerospace Congress
, Braunschweig, Germany, Paper No. DLRK2016_420144.
55.
Berg
,
H. P.
,
Himmelberg
,
A.
,
Malenky
,
U.
,
Meincke
,
M.
, and
Soontornpasatch
,
T.
,
2016
, “
Hybrides Turbo Compound Fan Triebwerk
,” German Aerospace Congress, Braunschweig, Germany, Paper No. DLRK2016-420246.
56.
Watson
,
N.
, and
Janota
,
M. S.
,
1982
,
Turbocharging the Internal Combustion Engine
, 1st
ed.
,
MacMillan
,
London
.
57.
Pucher
,
H.
, and
Zinner
,
K.
,
2012
,
Aufladung Von Verbrennungsmotoren: Grundlagen, Berechnung, Ausführungen
,
4th ed.
, Springer, Berlin.
58.
DLR
,
2012
, “
REXEL: Studie zu Range Extender Konzepten für den Einsatz in einem batterieelektrischen Fahrzeug
,”
DLR German Aerospace Center, Ministry of Finance and Economics Baden-Württemberg
, Stuttgart, Germany.
59.
Pischinger
,
R.
,
Klell
,
M.
, and
Sams
,
T.
,
2009
,
Thermodynamik Der Verbrennungskraftmaschine
,
3rd ed.
,
Springer
,
Wien, Austria
.
60.
Keating
,
E. L.
,
2007
,
Applied Combustion
,
CRC Press
,
Boca Raton, FL
.
61.
Roberts
,
J. M.
,
1985
,
Heat Release Estimation and Prediction of Wankel Stratified-Charge Combustion Engine
,
Massachusetts Institute of Technology
, Cambridge,
MA
.
62.
VanGerpen
,
J. H.
,
1990
, “
A Two-Stroke Diesel Engine Simulation Program
,” NASA Lewis Research Center, Cleveland, OH, Technical Report No.
ERI-89179
.http://www.dtic.mil/dtic/tr/fulltext/u2/a220992.pdf
63.
Horlock
,
J. H.
,
Watson
,
D. T.
, and
Jones
,
T. V.
,
2001
, “
Limitations on Gas Turbine Performance Imposed by Large Turbine Cooling Flows
,”
ASME J. Eng. Gas Turbines Power
,
123
(3), pp.
487
494
.
64.
Staudacher
,
S.
,
1995
, “
Untersuchungen zum sekundären Luftsystem von Luftstrahltriebwerken
,” Ph.D. dissertation, Technical University of Munich, Munich, Germany.
65.
Sehra
,
A. K.
, and
Whitlow
,
W. J.
,
2004
, “
Propulsion and Power for the 21st Century Aviation
,”
Prog. Aerosp. Sci.
,
40
(4–5), pp.
199
235
.
66.
Grieb
,
H.
,
2009
,
Verdichter Für Turbo-Flugtriebwerke
,
Springer
,
Berlin
.
67.
Mollenhauer
,
K.
, ed.,
2007
,
Handbuch Dieselmotoren
,
3rd ed.
,
Springer
,
Berlin
.
68.
Wu
,
Y.
,
Wang
,
Y.
,
Zhen
,
X.
,
Guan
,
S.
, and
Wang
,
J.
,
2014
, “
Three-Dimensional CFD (Computational Fluid Dynamics) Analysis of Scavenging Process in a Two-Stroke Free-Piston Engine
,”
J. Energy
,
68
, pp.
167
173
.
69.
Küttner
,
K.-H.
,
1992
,
Kolbenverdichter: Auslegung, Betrieb, Konstruktion
,
Springer
,
Berlin
.
70.
Mackerle
,
J.
,
1972
,
Air-Cooled Automotive Engines
,
Charles Griffin & Company
,
London
.
71.
Walsh
,
P. P.
, and
Fletcher
,
P.
,
1998
,
Gas Turbine Performance
,
2nd ed.
,
Blackwell Science
,
Oxford, UK
.
72.
Lechner
,
C.
, and
Seume
,
J.
,
2010
,
Stationäre Gasturbinen
,
2nd ed.
,
Springer-Verlag, Berlin
.
73.
Wankel SuperTec, 2017, “
Wankel Supertec Dieselmotor - KKM 500d
,” Wankel SuperTec GmbH, Cottbus, Germany, accessed Oct. 27, 2017, http://www.wankelsupertec.de/pdfs/datasheets/KKM500_Datenblatt.pdf
74.
Copeland
,
C. D.
,
Martinaz-Botas
,
R.
, and
Seiler
,
M.
,
2011
, “
Comparison Between Steady and Unsteady Double-Entry Turbine Performance Using the Quasi-Steady Assumption
,”
ASME J. Turbomach.
,
133
(3), p.
031001
.
75.
Copeland
,
C. D.
,
Martinaz-Botas
,
R.
, and
Seiler
,
M.
,
2012
, “
Unsteady Performance of a Double Entry Turbocharger Turbine With a Comparison to Steady Flow Conditions
,”
ASME J. Turbomach.
,
134
(2), p.
021022
.
76.
Snyder
,
P. H.
,
Elharis
,
T. M.
,
Wijeyakulasuriya
,
S. D.
,
Nalim
,
R. M.
,
Matsutomi
,
Y.
, and
Meyer
,
S. E.
,
2011
, “
Pressure Gain Combuster Component Viability Assessment Based on Initial Testing
,”
AIAA
Paper No. 2011-5749.
77.
Westmoreland
,
J. S.
, and
Stern
,
A. M.
,
1978
, “
Variable Cycle Engine Technology Program: Planning and Definition Study Final Report
,” NASA Lewis Research Center, Cleveland, OH, Report No.
NASA-CR-159539
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19790014913.pdf
You do not currently have access to this content.