Light-end fuels have recently garnered interest as potential fuel for advanced compression ignition (CI) engines. This next generation of engines, which aim to combine the high efficiency of diesel engines with the relative simplicity of gasoline engines, may allow engine manufacturers to continue improving efficiency and reducing emissions without a large increase in engine and aftertreatment system complexity. In this work, a 1D heavy-duty engine model was validated with measured data and then used to generate boundary conditions for the detailed chemical kinetic simulation corresponding to various combustion modes and operating points. Using these boundary conditions, homogeneous simulations were conducted for 242 fuels with research octane number (RON) from 40 to 100 and sensitivity (S) from 0 to 12. Combustion phasing (CA50) was most dependent on RON and less dependent on S under all conditions. Both RON and S had a greater effect on combustion phasing under partially premixed compression ignition (PPCI) conditions (19.3 deg) than under mixing-controlled combustion (MCC) conditions (5.8 deg). The effect of RON and S were also greatest for the lowest reactivity (RON > 90) fuels and under low-load conditions. The results for CA50 reflect the relative ignition delay for the various fuels at the start-of-injection (SOI) temperature. At higher SOI temperatures (>950K), CA50 was found to be less dependent on fuel sensitivity due to the convergence of ignition delay behavior of different fuels in the high-temperature region. Combustion of light-end fuels in CI engines can be an important opportunity for regulators, consumers, and engine-makers alike. However, selection of the right fuel specifications will be critical in development of the combustion strategy. This work, therefore, provides a first look at quantifying the effect of light-end fuel chemistry on advanced CI engine combustion across the entire light-end fuel reactivity space and provides a comparison of the trends for different combustion modes.

References

References
1.
Zhao
,
H.
,
2007
,
HCCI and CAI Engines
,
Woodhead Publishing
,
Cambridge, UK
.
2.
Reitz
,
R. D.
,
Hanson
,
R.
,
Splitter
,
D.
, and
Kokjohn
,
S.
, 2009, “
High-Efficiency, Ultra-Low Emission Combustion in a Heavy-Duty Engine Via Fuel Reactivity Control
,”
15th Diesel Engine-Efficiency and Emissions Research
(
DEER
) Conference, Dearborn, MI, Aug. 3.https://energy.gov/sites/prod/files/2014/03/f8/deer09_reitz.pdf
3.
Hanson
,
R. M.
,
Kokjohn
,
S. L.
,
Splitter
,
D. A.
, and
Reitz
,
R. D.
,
2010
, “
An Experimental Investigation of Fuel Reactivity Controlled PCCI Combustion in a Heavy-Duty Engine
,”
SAE Int. J. Engines
,
3
(1), pp.
700
716
.
4.
Reitz
,
R. D.
, and
Duraisamy
,
G.
,
2015
, “
Review of High Efficiency and Clean Reactivity Controlled Compression Ignition (RCCI) Combustion in Internal Combustion Engines
,”
Prog. Energy Combust. Sci.
,
46
, pp.
12
71
.
5.
Ickes
,
A.
,
Wallner
,
T.
,
Zhang
,
Y.
, and
De Ojeda
,
W.
,
2014
, “
Impact of Cetane Number on Combustion of a Gasoline-Diesel Dual-Fuel Heavy-Duty Multi-Cylinder Engine
,”
SAE Int. J. Engines
,
7
(2), pp.
860
872
.
6.
Zhang
,
Y.
,
Sagalovich
,
I.
,
De Ojeda
,
W.
,
Ickes
,
A.
,
Wallner
,
T.
, and
Wickman
,
D. D.
,
2013
, “
Development of Dual-Fuel Low Temperature Combustion Strategy in a Multi-Cylinder Heavy-Duty Compression Ignition Engine Using Conventional and Alternative Fuels
,”
SAE
Paper No. 2013-01-2422.
7.
Manente
,
V.
,
Johansson
,
B.
, and
Cannella
,
W.
,
2011
, “
Gasoline Partially Premixed Combustion, the Future of Internal Combustion Engines?
,”
Int. J. Engine Res.
,
12
(
3
), pp.
194
208
.
8.
Manente
,
V.
,
Johansson
,
B.
,
Tunestal
,
P.
, and
Cannella
,
W.
,
2009
, “
Effects of Different Type of Gasoline Fuels on Heavy Duty Partially Premixed Combustion
,”
SAE
Paper No. 2009-01-2668.
9.
Manente
,
V.
,
Zander
,
C.-G.
,
Johansson
,
B.
,
Tunestal
,
P.
, and
Cannella
,
W.
,
2010
, “
An Advanced Internal Combustion Engine Concept for Low Emissions and High Efficiency From Idle to Max Load Using Gasoline Partially Premixed Combustion
,”
SAE
Paper No. 2010-01-2198.
10.
Sellnau
,
M.
,
Foster
,
M.
,
Hoyer
,
K.
,
Moore
,
W.
,
Sinnamon
,
J.
, and
Husted
,
H.
,
2014
, “
Development of a Gasoline Direct Injection Compression Ignition (GDCI) Engine
,”
SAE Int. J. Engines
,
7
(2), pp.
835
851
.
11.
Sellnau
,
M.
,
Moore
,
W.
,
Sinnamon
,
J.
,
Hoyer
,
K.
,
Foster
,
M.
, and
Husted
,
H.
,
2015
, “
GDCI Multi-Cylinder Engine for High Fuel Efficiency and Low Emissions
,”
SAE Int. J. Engines
,
8
(2), pp.
775
790
.
12.
Sellnau
,
M.
,
Sinnamon
,
J.
,
Hoyer
,
K.
, and
Husted
,
H.
,
2011
, “
Gasoline Direct Injection Compression Ignition (GDCI)-Diesel-Like Efficiency With Low CO2 Emissions
,”
SAE
Paper No. 2011-01-1386.
13.
Sellnau
,
M. C.
,
Sinnamon
,
J.
,
Hoyer
,
K.
, and
Husted
,
H.
,
2012
, “
Full-Time Gasoline Direct-Injection Compression Ignition (GDCI) for High Efficiency and Low NOx and PM
,”
SAE
Paper No. 2012-01-0384.
14.
Kalghatgi
,
G.
,
Hildingsson
,
L.
,
Harrison
,
A.
, and
Johansson
,
B.
,
2011
, “
Autoignition Quality of Gasoline Fuels in Partially Premixed Combustion in Diesel Engines
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
3015
3021
.
15.
Kalghatgi
,
G. T.
,
Risberg
,
P.
, and
Angstrom
,
H.-E.
,
2007
, “
Partially Pre-Mixed Auto-Ignition of Gasoline to Attain Low Smoke and Low NOx at High Load in a Compression Ignition Engine and Comparison With a Diesel Fuel
,”
SAE
Paper No. 2007-01-0006.
16.
Kalghatgi
,
G. T.
,
Risberg
,
P.
, and
Ångström
,
H.-E.
,
2006
, “
Advantages of Fuels With High Resistance to Auto-Ignition in Late-Injection, Low-Temperature, Compression Ignition Combustion
,”
SAE
Paper No. 2006-01-3385.
17.
Viollet
,
Y.
,
Chang
,
J.
, and
Kalghatgi
,
G.
,
2014
, “
Compression Ratio and Derived Cetane Number Effects on Gasoline Compression Ignition Engine Running With Naphtha Fuels
,”
SAE Int. J. Fuels Lubricants
,
7
(2), pp.
412
426
.
18.
Ciatti
,
S.
, and
Subramanian
,
S. N.
,
2011
, “
An Experimental Investigation of Low-Octane Gasoline in Diesel Engines
,”
ASME J. Eng. Gas Turbines Power
,
133
(
9
), p.
092802
.
19.
Kook
,
S.
,
Bae
,
C.
,
Miles
,
P. C.
,
Choi
,
D.
, and
Pickett
,
L. M.
,
2005
, “
The Influence of Charge Dilution and Injection Timing on Low-Temperature Diesel Combustion and Emissions
,”
SAE
Paper No. 2005-01-3837.
20.
Kalghatgi
,
G.
,
Hildingsson
,
L.
, and
Johansson
,
B.
,
2010
, “
Low NOx and Low Smoke Operation of a Diesel Engine Using Gasolinelike Fuels
,”
ASME J. Eng. Gas Turbines Power
,
132
(
9
), p.
092803
.
21.
Hildingsson
,
L.
,
Kalghatgi
,
G.
,
Tait
,
N.
,
Johansson
,
B.
, and
Harrison
,
A.
,
2009
, “
Fuel Octane Effects in the Partially Premixed Combustion Regime In Compression Ignition Engines
,”
SAE
Paper No. 2009-01-2648.
22.
Hildingsson
,
L.
,
Johansson
,
B.
,
Kalghatgi
,
G. T.
, and
Harrison
,
A. J.
,
2010
, “
Some Effects of Fuel Autoignition Quality and Volatility in Premixed Compression Ignition Engines
,”
SAE
Paper No. 2010-01-0607.
23.
Kalghatgi
,
G.
,
Hildingsson
,
L.
,
Harrison
,
A.
, and
Johansson
,
B.
,
2011
, “
Surrogate Fuels for Premixed Combustion in Compression Ignition Engines
,”
Int. J. Engine Res.
,
12
(5), pp.
452
465
.
24.
Kalghatgi
,
G.
,
Gurubaran
,
R. K.
,
Davenport
,
A.
,
Harrison
,
A.
,
Hardalupas
,
Y.
, and
Taylor
,
A.
,
2013
, “
Some Advantages and Challenges of Running a Euro IV, V6 Diesel Engine on a Gasoline Fuel
,”
Fuel
,
108
, pp.
197
207
.
25.
Li
,
T.
,
Moriwaki
,
R.
,
Ogawa
,
H.
,
Kakizaki
,
R.
, and
Murase
,
M.
,
2012
, “
Dependence of Premixed Low-Temperature Diesel Combustion on Fuel Ignitability and Volatility
,”
Int. J. Engine Res.
,
13
(
1
), pp.
14
27
.
26.
Manente
,
V.
,
Johansson
,
B.
, and
Tunestal
,
P.
,
2009
, “
Partially Premixed Combustion at High Load Using Gasoline and Ethanol, a Comparison With Diesel
,”
SAE
Paper No. 2009-01-0944.
27.
Leermakers
,
C.
,
Bakker
,
P.
,
Somers
,
L.
,
de Goey
,
L.
, and
Johansson
,
B.
,
2013
, “
Commercial Naphtha Blends for Partially Premixed Combustion
,”
SAE
Paper No. 2013-01-1681.
28.
Borgqvist
,
P.
,
Tunestal
,
P.
, and
Johansson
,
B.
,
2012
, “
Gasoline Partially Premixed Combustion in a Light Duty Engine at Low Load and Idle Operating Conditions
,”
SAE
Paper No. 2012-01-0687.
29.
Chang
,
J.
,
Kalghatgi
,
G.
,
Amer
,
A.
, and
Viollet
,
Y.
,
2012
, “
Enabling High Efficiency Direct Injection Engine With Naphtha Fuel Through Partially Premixed Charge Compression Ignition Combustion
,”
SAE
Paper No. 2012-01-0677.
30.
Weall
,
A.
, and
Collings
,
N.
,
2007
, “
Investigation into Partially Premixed Combustion in a Light-Duty Multi-Cylinder Diesel Engine Fuelled Gasoline and Diesel With a Mixture of
,”
SAE
Papers No. 2007-01-4058.
31.
Won
,
H.
,
Peters
,
N.
,
Tait
,
N.
, and
Kalghatgi
,
G.
,
2012
, “
Sufficiently Premixed Compression Ignition of a Gasoline-like Fuel Using Three Different Nozzles in a Diesel Engine
,”
Proc. Inst. Mech. Eng., Part D
,
226
(
5
), pp.
698
708
.
32.
Won
,
H. W.
,
Pitsch
,
H.
,
Tait
,
N.
, and
Kalghatgi
,
G.
,
2012
, “
Some Effects of Gasoline and Diesel Mixtures on Partially Premixed Combustion and Comparison With the Practical Fuels Gasoline and Diesel in a Compression Ignition Engine
,”
Proc. Inst. Mech. Eng., Part D
,
226
(9), pp.
1259
1270
.
33.
Borgqvist
,
P.
,
Tunestal
,
P.
, and
Johansson
,
B.
,
2013
, “
Comparison of Negative Valve Overlap (NVO) and Rebreathing Valve Strategies on a Gasoline PPC Engine at Low Load and Idle Operating Conditions
,”
SAE Int. J. Engines
,
6
(1), pp.
366
378
.
34.
Ra
,
Y.
,
Loeper
,
P.
,
Reitz
,
R. D.
,
Andrie
,
M.
,
Krieger
,
R.
,
Foster
,
D. E.
,
Durrett
,
R.
,
Gopalakrishnan
,
V.
,
Plazas
,
A.
, and
Peterson
,
R.
,
2011
, “
Study of High Speed Gasoline Direct Injection Compression Ignition (GDICI) Engine Operation in the LTC Regime
,”
SAE
Paper No. 2011-01-1182.
35.
Ciatti
,
S.
,
Johnson
,
M.
,
Adhikary
,
B. D.
,
Reitz
,
R. D.
, and
Knock
,
A.
,
2013
, “
Efficiency and Emissions Performance of Multizone Stratified Compression Ignition Using Different Octane Fuels
,”
SAE
Paper No. 2013-01-0263.
36.
Ickes
,
A.
,
Bohac
,
S.
, and
Assanis
,
D.
,
2009
, “
Effect of Fuel Cetane Number on a Premixed Diesel Combustion Mode
,”
Int. J. Engine Res.
,
10
(
4
), pp.
251
263
.
37.
Cracknell
,
R. F.
,
Rickeard
,
D. J.
,
Ariztegui
,
J.
,
Rose
,
K. D.
,
Muether
,
M.
,
Lamping
,
M.
, and
Kolbeck
,
A.
,
2008
, “
Advanced Combustion for Low Emissions and High Efficiency Part 2: Impact of Fuel Properties on HCCI Combustion
,”
SAE
Paper No. 2008-01-2404.
38.
Zhang
,
F.
,
Xu
,
H.
,
Rezaei
,
S. Z.
,
Kalghatgi
,
G.
, and
Shuai
,
S.-J.
,
2012
, “
Combustion and Emission Characteristics of a PPCI Engine Fuelled With Dieseline
,”
SAE
Paper No. 2012-01-1138.
39.
Bakker
,
P.
,
Goes
,
J. D. A.
,
Somers
,
L.
, and
Johansson
,
B.
,
2014
, “
Characterization of Low Load PPC Operation Using RON70 Fuels
,”
SAE
Paper No. 2014-01-1304.
40.
Akihama
,
K.
,
Kosaka
,
H.
,
Hotta
,
Y.
,
Nishikawa
,
K.
,
Inagaki
,
K.
,
Fuyuto
,
T.
,
Iwashita
,
Y.
,
Farrell
,
J. T.
, and
Weissman
,
W.
,
2008
, “
An Investigation of High Load (Compression Ignition) Operation of the ‘Naphtha Engine’-a Combustion Strategy for Low Well-to-Wheel CO2 Emissions
,”
SAE Int. J. Fuels Lubricants
,
1
(1), pp.
920
932
.
41.
Rose
,
K. D.
,
Cracknell
,
R. F.
,
Rickeard
,
D. J.
,
Ariztegui
,
J.
,
Cannella
,
W.
,
Elliott
,
N.
,
Hamje
,
H.
,
Muether
,
M.
,
Schnorbus
,
T.
, and
Kolbeck
,
A.
,
2010
, “
Impact of Fuel Properties on Advanced Combustion Performance in a Diesel Bench Engine and Demonstrator Vehicle
,”
SAE
Paper No. 2010-01-0334.
42.
Chang
,
J.
,
Kalghatgi
,
G.
,
Amer
,
A.
,
Adomeit
,
P.
,
Rohs
,
H.
, and
Heuser
,
B.
,
2013
, “
Vehicle Demonstration of Naphtha Fuel Achieving Both High Efficiency and Drivability With EURO6 Engine-Out NOx Emission
,”
SAE Int. J. Engines
,
6
(1), pp.
101
119
.
43.
Chang
,
J.
,
Viollet
,
Y.
,
Amer
,
A.
, and
Kalghatgi
,
G.
,
2013
, “
Fuel Economy Potential of Partially Premixed Compression Ignition (PPCI) Combustion With Naphtha Fuel
,”
SAE
Paper No. 2013-01-2701.
44.
Kolodziej
,
C. P.
,
Ciatti
,
S.
,
Vuilleumier
,
D.
,
Adhikary
,
B. D.
, and
Reitz
,
R. D.
,
2014
, “
Extension of the Lower Load Limit of Gasoline Compression Ignition With 87 AKI Gasoline by Injection Timing and Pressure
,”
SAE
Paper No. 2014-01-1302.
45.
Dempsey
,
A. B.
,
Curran
,
S.
,
Wagner
,
R.
, and
Cannella
,
W.
,
2015
, “
Effect of Premixed Fuel Preparation for Partially Premixed Combustion With a Low Octane Gasoline on a Light-Duty Multicylinder Compression Ignition Engine
,”
ASME J. Eng. Gas Turbines Power
,
137
(
11
), p.
111506
.
46.
Zhang
,
Y.
,
Voice
,
A.
,
Tzanetakis
,
T.
,
Traver
,
M.
, and
Cleary
,
D.
,
2016
, “
An Evaluation of Combustion and Emissions Performance With Low Cetane Naphtha Fuels in a Multi-Cylinder Heavy-Duty Diesel Engine
,”
ASME J. Eng. Gas Turbines Power
,
138
(
10
), p.
102805
.
47.
Aronsson
,
H. S.
,
Tuner
,
M.
, and
Johansson
,
B.
,
2014
, “
Using Oxygenated Gasoline Surrogate Compositions to Map RON and MON
,”
SAE
Paper No. 2014-01-1303.
48.
SGS Group
, 2013, “
SGS Worldwide Fuel Survey (WWFS) Summer 2013, Winter 2013/2014
,” SGS Group, Geneva, Switzerland.
49.
Haverly Systems
,
2015
, “
H/COMET Web-Based Crude Oil Management Evaluation Tool
,” Haverly Systems, Denville, NJ.
50.
Yanowitz
,
J.
,
Ratcliff
,
M. A.
,
McCormick
,
R. L.
,
Taylor
,
J. D.
, and
Murphy
,
M. J.
,
2014
, “
Compendium of Experimental Cetane Numbers
,” National Renewable Energy Laboratory, Golden, CO.
51.
Zheng
,
Z.
,
Badawy
,
T.
,
Henein
,
N.
,
Sattler
,
E.
, and
Johnson
,
N.
,
2014
, “
Effect of Cetane Improver on Autoignition Characteristics of Low Cetane Sasol IPK Using Ignition Quality Tester
,”
ASME J. Eng. Gas Turbines Power
,
136
(
8
), p.
081505
.
52.
Solaka Aronsson
,
H.
,
Truedsson
,
I.
,
Tuner
,
M.
,
Johansson
,
B.
, and
Cannella
,
W.
,
2014
, “
Comparison of Fuel Effects on Low Temperature Reactions in PPC and HCCI Combustion
,”
SAE
Paper No. 2014-01-2679.
53.
Das
,
P.
,
Subbarao
,
P. M. V.
, and
Subrahmanyam
,
J. P.
,
2015
, “
Effect of Cetane Number and Fuel Properties on Combustion and Emission Characteristics of an HCCI-DI Combustion Engine Using a Novel Dual Injection Strategy
,”
SAE
Paper No. 2015-26-0023.
54.
Terashima
,
A.
,
Ito
,
N.
,
Tojo
,
T.
,
Iijima
,
A.
,
Yoshida
,
K.
, and
Shoji
,
H.
,
2013
, “
A Study of the Effects of Varying the Compression Ratio and Fuel Octane Number on HCCI Engine Combustion using Spectroscopic Measurement
,”
SAE
Paper No. 2013-32-9031.
55.
Truedsson
,
I.
,
Tuner
,
M.
,
Johansson
,
B.
, and
Cannella
,
W.
,
2012
, “
Pressure Sensitivity of HCCI Auto-Ignition Temperature for Primary Reference Fuels
,”
SAE Int. J. Engines
,
5
(
3
), pp.
1089
1108
.
56.
Shibata
,
G.
,
Kawaguchi
,
R.
,
Yoshida
,
S.
, and
Ogawa
,
H.
,
2014
, “
Molecular Structure of Hydrocarbons and Auto-Ignition Characteristics of HCCI Engines
,”
SAE Int. J. Fuels Lubr.
,
7
(
3
), pp.
1050
1061
.
57.
Rapp
,
V.
,
Cannella
,
W.
,
Chen
,
J.-Y.
, and
Dibble
,
R.
,
2013
, “
Predicting Fuel Performance for Future HCCI Engines
,”
Combust. Sci. Technol
,
185
(
5
), pp.
735
748
.
58.
Truedsson
,
I.
,
Cannella
,
W.
,
Johansson
,
B.
, and
Tuner
,
M.
,
2014
, “
Development of New Test Method for Evaluating HCCI Fuel Performance
,”
SAE
Paper No. 2014-01-2667.
59.
EIA,
2014
, “
International Energy Outlook 2014: World Petroleum and Other Liquid Fuels
,” Energy Information Administration, U.S. Department of Energy, Washington, DC.
60.
Wood Mackenzie
,
2015
, “
Refinery Benchmarking Tool
,” Wood Mackenzie, Edinburgh, UK.
61.
OPEC
,
2014
, “
World Oil Outlook
,” Organization of Petroleum Exporting Countries Secretariat, Vienna, Austria.
62.
World Energy Council
2011
, “
World Energy Scenarios: Global Transport Scenarios 2050
,” World Energy Council, London.
63.
Xu
,
H.
,
Fu
,
H.
,
Williams
,
H.
, and
Shilling
,
I.
,
2002
, “
Modelling Study of Combustion and Gas Exchange in a HCCI (CAI) Engine
,”
SAE
Paper No. 2002-01-0114.
64.
Xu
,
H.
,
Williams
,
A.
,
Fu
,
H.
,
Wallace
,
S.
,
Richardson
,
S.
, and
Richardson
,
M.
,
2003
, “
Operating Characteristics of a Homogeneous Charge Compression Ignition Engine With Cam Profile Switching—Simulation Study
,”
SAE
Paper No. 2003-01-1859.
65.
Milovanovic
,
N.
,
Chen
,
R.
, and
Turner
,
J.
,
2004
, “
Influence of the Variable Valve Timing Strategy on the Control of a Homogeneous Charge Compression (HCCI) Engine
,”
SAE
Paper No. 2004-01-1899.
66.
Ogink
,
R.
, and
Golovitchev
,
V.
,
2002
, “
Gasoline HCCI Modeling: An Engine Cycle Simulation Code With a Multi-Zone Combustion Model
,”
SAE
Paper No. 2002-01-1745.
67.
Narayanaswamy
,
K.
, and
Rutland
,
C. J.
,
2004
, “
Cycle Simulation Diesel HCCI Modeling Studies and Control
,”
SAE
Paper No. 2004-01-2997.
68.
Gamma Technologies LLC
, 2016, “
GT-Power, v7.5.0
,” Gamma Technologies LLC, Westmont, IL, accessed May 1, 2016, http://www.gtisoft.com/
69.
DieselNet
, 1997, “
European Stationary Cycle (ESC)
,” ECOpoint Inc., Mississauga, ON, Canada, accessed Jan. 1, 2016, https://www.dieselnet.com/standards/cycles/esc.php
70.
Tuner
,
M.
,
Johansson
,
B.
,
Keller
,
P.
, and
Becker
,
M.
,
2013
, “
Loss Analysis of a HD-PPC Engine With Two-Stage Turbocharging Operating in the European Stationary Cycle
,”
SAE
Paper No. 2013-01-2700.
71.
Millo
,
F.
,
Mallamo
,
F.
, and
Mego
,
G. G.
,
2005
, “
The Potential of Dual Stage Turbocharging and Miller Cycle for HD Diesel Engines
,”
SAE
Paper No. 2005-01-0221.
72.
Zhang
,
Y.
,
Kumar
,
P.
,
Traver
,
M.
, and
Cleary
,
D.
,
2016
, “
Conventional and Low Temperature Combustion Using Naphtha Fuels in a Multi-Cylinder Heavy-Duty Diesel Engine
,”
SAE Int. J. Engines
,
9
(
2
), pp. 1021–1035.
73.
ASTM
,
2014
, “
Standard Specification for Diesel Fuel Oils
,” ASTM International, West Conshohocken, PA, Standard No.
D975
.
74.
Kalghatgi
,
G.
,
Babiker
,
H.
, and
Badra
,
J.
,
2015
, “
A Simple Method to Predict Knock Using Toluene, N-Heptane and Iso-Octane Blends (TPRF) as Gasoline Surrogates
,”
SAE Int. J. Engines
,
8
(
2
), pp.
505
519
.
75.
ANSYS,
2013
, “
Reaction Design, CHEMKIN-PRO
,” ANSYS, Inc., Canonsburg, PA.
76.
Mehl
,
M.
,
Chen
,
J. Y.
,
Pitz
,
W. J.
,
Sarathy
,
S. M.
, and
Westbrook
,
C. K.
,
2011
, “
An Approach for Formulating Surrogates for Gasoline With Application Toward a Reduced Surrogate Mechanism for CFD Engine Modeling
,”
Energy Fuels
,
25
(
11
), pp.
5215
5223
.
77.
Andrae
,
J. C. G.
,
Brinck
,
T.
, and
Kalghatgi
,
G. T.
,
2008
, “
HCCI Experiments With Toluene Reference Fuels Modeled by a Semidetailed Chemical Kinetic Model
,”
Combust. Flame
,
155
(
4
), pp.
696
712
.
78.
Liu
,
Y.-D.
,
Jia
,
M.
,
Xie
,
M.-Z.
, and
Pang
,
B.
,
2013
, “
Development of a New Skeletal Chemical Kinetic Model of Toluene Reference Fuel With Application to Gasoline Surrogate Fuels for Computational Fluid Dynamics Engine Simulation
,”
Energy Fuels
,
27
(
8
), pp.
4899
4909
.
79.
Hartmann
,
M.
,
Gushterova
,
I.
,
Fikri
,
M.
,
Schulz
,
C.
,
Schießl
,
R.
, and
Maas
,
U.
,
2011
, “
Auto-Ignition of Toluene-Doped n-Heptane and Iso-Octane/Air Mixtures: High-Pressure Shock-Tube Experiments and Kinetics Modeling
,”
Combust. Flame
,
158
(
1
), pp.
172
178
.
You do not currently have access to this content.