A model FLOX® combustor, featuring a single high momentum premixed jet flame, has been investigated using laser diagnostics in an optically accessible combustion chamber at a pressure of 8 bar. The model combustor was designed as a large single eccentric nozzle main burner (Ø 40 mm) together with an adjoining pilot burner and was operated with natural gas. To gain insight into the flame stabilization mechanisms with and without piloting, simultaneous particle image velocimetry (PIV) and OH laser-induced fluorescence (LIF) measurements have been performed at numerous two-dimensional (2D) sections of the flame. Additional OH-LIF measurements without PIV particles were analyzed quantitatively resulting in absolute OH concentrations and temperature fields. The flow field looks rather similar for both the unpiloted and the piloted cases, featuring a large recirculation zone next to the high momentum jet. However, flame shape and position change drastically. For the unpiloted case, the flame is lifted and widely distributed. Isolated flame kernels are found at the flame root in the vicinity of small-scale vortices. For the piloted flame, on the other hand, both pilot and main flame are attached to the burner base plate, and flame stabilization seems to take place on much smaller spatial scales with a connected flame front and no isolated flame kernels. The single-shot analysis gives rise to the assumption that for the unpiloted case, small-scale vortices act like the pilot burner flow in the opposed case and constantly impinge and ignite the high momentum jet at its root.

References

References
1.
Wünning, J. G.
, 1991, “
FLOX®
,” WS Wärmeprozesstechnik GmbH, Renningen, Germany.
2.
Wünning, J. A.
, and
Wünning, J. G.
,
1997
, “
Flameless Oxidation to Reduce Thermal NO-Formation
,”
Prog. Energy Combust. Sci.
,
23
(1), pp. 81–94.
3.
Lückerath
,
R.
,
Meier
,
W.
, and
Aigner
,
M.
,
2007
, “
FLOX® Combustion at High Pressure With Different Fuel Compositions
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), p.
011505
.
4.
Lammel
,
O.
,
Schütz
,
H.
,
Schmitz
,
G.
,
Lückerath
,
R.
,
Stöhr
,
M.
,
Noll
,
B.
,
Aigner
,
M.
,
Hase
,
M.
, and
Krebs
,
W.
,
2010
, “
FLOX® Combustion at High Power Density and High Flame Temperatures
,”
ASME J. Eng. Gas Turbines Power
,
132
(
12
), p.
121503
.
5.
Danon
,
B.
,
de Jong
,
W.
, and
Roekaerts
,
D. J. E. M.
,
2010
, “
Experimental and Numerical Investigation of a FLOX Combustor Firing Low Calorific Value Gases
,”
Combust. Sci. Technol.
,
182
(
9
), pp.
1261
1278
.
6.
Rödiger
,
T.
,
Lammel
,
O.
,
Aigner
,
M.
,
Beck
,
C.
, and
Krebs
,
W.
,
2013
, “
Part-Load Operation of a Piloted FLOX® Combustion System
,”
ASME J. Eng. Gas Turbines Power
,
135
(
3
), p.
031503
.
7.
Lammel
,
O.
,
Rödiger
,
T.
, and
Severin
,
M.
,
2014
, “
Industriegasturbinenbrenner für alternative Brenngase
,” DLR, Institut für Verbrennungstechnik, Stuttgart, Germany, Contract No. 0327718B, 01075401.
8.
Lammel
,
O.
,
Rödiger
,
T.
,
Stöhr
,
M.
,
Ax
,
H.
,
Kutne
,
P.
,
Severin
,
M.
,
Griebel
,
P.
, and
Aigner
,
M.
,
2014
, “
Investigation of Flame Stabilization in a High-Pressure Multi-Jet Combustor by Laser Measurement Techniques
,”
ASME
Paper No. GT2014-26376.
9.
Coelho
,
P.
, and
Peters
,
N.
,
2001
, “
Numerical Simulation of a Mild Combustion Burner
,”
Combust. Flame
,
124
(
3
), pp.
503
518
.
10.
Schütz
,
H.
,
Lückerath
,
R.
,
Noll
,
B.
, and
Aigner
,
M.
,
2007
, “
Complex Chemistry Simulation of FLOX®: Flameless Oxidation Combustion
,”
Clean Air Int. J. Energy Clean Environ.
,
8
(
3
), pp.
239
257
.
11.
Lammel
,
O.
,
Stöhr
,
M.
,
Kutne
,
P.
,
Dem
,
C.
,
Meier
,
W.
, and
Aigner
,
M.
,
2012
, “
Experimental Analysis of Confined Jet Flames by Laser Measurement Techniques
,”
ASME J. Eng. Gas Turbines Power
,
134
(
4
), p.
041506
.
12.
Yin
,
Z.
,
Nau
,
P.
,
Boxx
,
I.
, and
Meier
,
W.
,
2015
, “
Characterization of a Single-Nozzle FLOX® Model Combustor Using KHz Laser Diagnostics
,”
ASME
Paper No. GT2015-43282.
13.
Di Domenico
,
M.
,
Gerlinger
,
P.
, and
Noll
,
B.
,
2011
, “
Numerical Simulations of Confined, Turbulent, Lean, Premixed Flames Using a Detailed Chemistry Combustion Model
,”
ASME
Paper No. GT2011-45520.
14.
Lammel
,
O.
,
Severin
,
M.
,
Ax
,
H.
,
Lückerath
,
R.
,
Tomasello
,
A.
,
Emmi
,
Y.
,
Noll
,
B.
,
Aigner
,
M.
, and
Panek
,
L.
,
2017
, “
High Momentum Jet Flames at Elevated Pressure, A: Experimental and Numerical Investigation for Different Fuels
,”
ASME
Paper No. GT2017-64615.
15.
Dandy
,
D. S.
, and
Vosen
,
S. R.
,
1992
, “
Numerical and Experimental Studies of Hydroxyl Radical Chemiluminescence in Methane-Air Flames
,”
Combust. Sci. Technol.
,
82
(1–6), pp.
131
150
.
16.
Heinze
,
J.
,
Meier
,
U.
,
Behrendt
,
T.
,
Willert
,
C.
,
Geigle
,
K.-P.
,
Lammel
,
O.
, and
Lückerath
,
R.
,
2011
, “
PLIF Thermometry Based on Measurements of Absolute Concentrations of the OH Radical
,”
Int. J. Res. Phys. Chem. Chem. Phys.
,
225
(
11–12
), pp.
1315
1341
.
17.
Coxon
,
J.
,
1980
, “
Optimum Molecular Constants and Term Values for the X2Π(v5) and A2Σ+(v3) States of OH
,”
Can. J. Phys.
,
58
(
7
), pp.
933
949
.
18.
Rahmann
,
U.
,
Kreutner
,
W.
, and
Kohse-Höinghaus
,
K.
,
1999
, “
Rate-Equation Modeling of Single- and Multiple-Quantum Vibrational Energy Transfer of OH (A2Σ+,v=0 to 3)
,”
Appl. Phys. B
,
69
(
1
), pp.
61
70
.
You do not currently have access to this content.