This paper presents the experimental investigation of pulsation-amplitude-dependent flame dynamics associated with transverse thermoacoustic oscillations at screech level frequencies in a generic gas turbine combustor. Specifically, the flame behavior at different levels of pulsation amplitudes is assessed and interpreted. Spatial dynamics of the flame are measured by imaging the OH⋆ chemiluminescence (CL) signal synchronously to the dynamic pressure at the combustor's face plate. First, linear thermoacoustic stability states, modal dynamics, and flame-acoustic phase relations are evaluated. It is found that the unstable acoustic modes converge into a predominantly rotating character in the direction of the mean flow swirl. Furthermore, the flame modulation is observed to be in phase with the acoustic pressure at all levels of the oscillation amplitude. Second, distributed flame dynamics are investigated by means of visualizing the mean and oscillating heat release distribution at different pulsation amplitudes. The observed flame dynamics are then compared against numerical evaluations of the respective amplitude-dependent thermoacoustic growth rates, which are computed using analytical models in the fashion of a noncompact flame-describing function. While results show a nonlinear contribution for the individual growth rates, the superposition of flame deformation and displacement balances out to a constant flame driving. This latter observation contradicts the state-of-the-art perception of root-causes for limit-cycle oscillations in thermoacoustic gas turbine systems, for which the heat release saturates with increasing amplitudes. Consequently, the systematic observations and analysis of amplitude-dependent flame modulation shows alternative paths to the explanation of mechanisms that might cause thermoacoustic saturation in high frequency systems.
Skip Nav Destination
Article navigation
April 2018
Research-Article
Pulsation-Amplitude-Dependent Flame Dynamics of High-Frequency Thermoacoustic Oscillations in Lean-Premixed Gas Turbine Combustors
Frederik M. Berger,
Frederik M. Berger
Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching 85748, Germany
e-mail: berger@td.mw.tum.de
Technische Universität München,
Garching 85748, Germany
e-mail: berger@td.mw.tum.de
Search for other works by this author on:
Tobias Hummel,
Tobias Hummel
Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching 85748, Germany;
Institute for Advanced Study,
Technische Universität München,
Garching 85748, Germany
e-mail: hummel@td.mw.tum.de
Technische Universität München,
Garching 85748, Germany;
Institute for Advanced Study,
Technische Universität München,
Garching 85748, Germany
e-mail: hummel@td.mw.tum.de
Search for other works by this author on:
Bruno Schuermans,
Bruno Schuermans
Institute for Advanced Study,
Technische Universität München,
Garching 85748, Germany;
GE Power, Baden 5401, Switzerland
e-mail: bruno.schuermans@ge.com
Technische Universität München,
Garching 85748, Germany;
GE Power, Baden 5401, Switzerland
e-mail: bruno.schuermans@ge.com
Search for other works by this author on:
Thomas Sattelmayer
Thomas Sattelmayer
Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching 85748, Germany
e-mail: sattelmayer@td.mw.tum.de
Technische Universität München,
Garching 85748, Germany
e-mail: sattelmayer@td.mw.tum.de
Search for other works by this author on:
Frederik M. Berger
Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching 85748, Germany
e-mail: berger@td.mw.tum.de
Technische Universität München,
Garching 85748, Germany
e-mail: berger@td.mw.tum.de
Tobias Hummel
Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching 85748, Germany;
Institute for Advanced Study,
Technische Universität München,
Garching 85748, Germany
e-mail: hummel@td.mw.tum.de
Technische Universität München,
Garching 85748, Germany;
Institute for Advanced Study,
Technische Universität München,
Garching 85748, Germany
e-mail: hummel@td.mw.tum.de
Bruno Schuermans
Institute for Advanced Study,
Technische Universität München,
Garching 85748, Germany;
GE Power, Baden 5401, Switzerland
e-mail: bruno.schuermans@ge.com
Technische Universität München,
Garching 85748, Germany;
GE Power, Baden 5401, Switzerland
e-mail: bruno.schuermans@ge.com
Thomas Sattelmayer
Lehrstuhl für Thermodynamik,
Technische Universität München,
Garching 85748, Germany
e-mail: sattelmayer@td.mw.tum.de
Technische Universität München,
Garching 85748, Germany
e-mail: sattelmayer@td.mw.tum.de
Contributed by the Combustion and Fuels Committee of ASME for publication in the JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER. Manuscript received July 3, 2017; final manuscript received August 1, 2017; published online November 7, 2017. Editor: David Wisler.
J. Eng. Gas Turbines Power. Apr 2018, 140(4): 041507 (10 pages)
Published Online: November 7, 2017
Article history
Received:
July 3, 2017
Revised:
August 1, 2017
Citation
Berger, F. M., Hummel, T., Schuermans, B., and Sattelmayer, T. (November 7, 2017). "Pulsation-Amplitude-Dependent Flame Dynamics of High-Frequency Thermoacoustic Oscillations in Lean-Premixed Gas Turbine Combustors." ASME. J. Eng. Gas Turbines Power. April 2018; 140(4): 041507. https://doi.org/10.1115/1.4038036
Download citation file:
Get Email Alerts
Inter-Stage Pressure Drop of Multi-Stage Brush Seal With Differentiated Structure
J. Eng. Gas Turbines Power (July 2023)
Estimation of Wiebe Function Parameters for Syngas and Anode Off-Gas Combustion in Spark-Ignition Engines
J. Eng. Gas Turbines Power (July 2023)
Mixture Distribution in Spark Ignited Port Fuel Injection Engines: A Review
J. Eng. Gas Turbines Power (July 2023)
Related Articles
Low-Order Modeling of Nonlinear High-Frequency Transversal Thermoacoustic Oscillations in Gas Turbine Combustors
J. Eng. Gas Turbines Power (July,2017)
High-Frequency Thermoacoustic Modulation Mechanisms in Swirl-Stabilized Gas Turbine Combustors—Part II: Modeling and Analysis
J. Eng. Gas Turbines Power (July,2017)
High-Frequency Thermoacoustic Modulation Mechanisms in Swirl-Stabilized Gas Turbine Combustors—Part I: Experimental Investigation of Local Flame Response
J. Eng. Gas Turbines Power (July,2017)
Thermoacoustics of Can-Annular Combustors
J. Eng. Gas Turbines Power (January,2019)
Related Proceedings Papers
Related Chapters
Introduction I: Role of Engineering Science
Fundamentals of heat Engines: Reciprocating and Gas Turbine Internal Combustion Engines
Outlook
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Augmentation of Turbulence and Mixing in Gas Turbine Combustors by Introducing Unsteady Effects
Proceedings of the 2010 International Conference on Mechanical, Industrial, and Manufacturing Technologies (MIMT 2010)