The increasing amount of volatile renewable energy sources drives the necessity of flexible conventional power plants to compensate for fluctuations of the power supply. Gas turbines in a combined cycle power plant (CCPP) adjust the power output quickly but a sudden increase of CO and unburned hydrocarbons emissions limits their turn-down ratio. To extend the turn-down ratio, part of the fuel can be processed to syngas, which exerts a higher reactivity. An autothermal on-board syngas generator in combination with two different burner concepts for natural gas (NG) and syngas mixtures is presented in this study. A mixture of NG, water vapor, and air reacts catalytically in an autothermal reactor test rig to form syngas. At atmospheric pressure, the fuel processor generates syngas with a hydrogen content of −30 vol % and a temperature of 800 K within a residence time of 200 ms. One concept for the combustion of NG and syngas mixtures comprises a generic swirl stage with a central lance injector for the syngas. The second concept includes a central swirl stage with an outer ring of jets. The combustion is analyzed for both concepts by OH*-chemiluminescence, lean blow out (LBO) limit, and gaseous emissions. The central lance concept with syngas injection exhibits an LBO adiabatic flame temperature that is 150 K lower than in premixed NG operation. For the second concept, an extension of almost 200 K with low CO emission levels can be reached. This study shows that autothermal on-board syngas generation is feasible and efficient in terms of turn-down ratio extension and CO burn-out.

References

References
1.
Bouten
,
T.
,
Beran
,
M.
, and
Axelsson
,
L.-U.
,
2015
, “
Experimental Investigation of Fuel Composition Effects on Syngas Combustion
,”
ASME
Paper No. GT2015-42401.
2.
Sigfrid
,
I.
,
Whiddon
,
R.
,
Collin
,
R.
, and
Klingmann
,
J.
,
2010
, “
Experimental Investigation of Laminar Flame Speeds for Medium Calorific Gas With Various Amounts of Hydrogen and Carbon Monoxide Content at Gas Turbine Temperatures
,”
ASME
Paper No. GT2010-22275.
3.
Bozza
,
F.
,
Cameretti
,
M.
, and
Tuccillo
,
R.
,
2001
, “
Performance Prediction and Combustion Modeling of Low CO2 Emission Gas Turbines
,”
ASME
Paper No. 2001-GT-0066.
4.
Bozza
,
F.
,
Cameretti
,
M.
, and
Tuccillo
,
R.
,
2002
, “
The Employment of Hydrogenated Fuels From Natural Gas Reforming: Gas Turbine and Combustion Analysis
,”
ASME
Paper No. GT-2002-30414.
5.
Ren
,
J.-Y.
,
Qin
,
W.
,
Egolfopoulos
,
F. N.
,
Mak
,
H.
, and
Tsotsis
,
T. T.
,
2001
, “
Methane Reforming and Its Potential Effect on the Efficiency and Pollutant Emissions of Lean Methane-Air Combustion
,”
Chem. Eng. Sci.
,
56
(
4
), pp.
1541
1549
.
6.
Gomez Maqueo
,
P. D.
,
Versailles
,
P.
,
Bourque
,
G.
, and
Bergthorson
,
J. M.
,
2016
, “
A Numerical Study on the Reactivity of Biogas/Reformed-Gas/Air and Methane/Reformed-Gas/Air Mixtures at Gas Turbine Relevant Conditions
,”
ASME
Paper No. GT2016-56655.
7.
Karim
,
H.
,
Lyle
,
K.
,
Etemad
,
S.
,
Smith
,
L.
,
Pfefferle
,
W.
,
Dutta
,
P.
, and
Smith
,
K.
,
2002
, “
Advanced Catalytic Pilot for Low NOx Industrial Gas Turbines
,”
ASME
Paper No. GT-2002-30083.
8.
Pfefferle
,
W. C.
,
Smith
,
L. L.
,
Etemad
,
S.
,
Castaldi
,
M. J.
, and
Ul Karim
,
M. H.
,
2002
, “
Method and Apparatus for a Fuel-Rich Catalytic Reactor
,” Precision Combustion, Inc., North Haven, CT, U.S. Patent No.
US6358040 B1
http://www.google.com.pg/patents/US6358040.
9.
Smith
,
L.
,
Karim
,
H.
,
Castaldi
,
M. J.
,
Etemad
,
S.
,
Pfefferle
,
W.
,
Khanna
, V
. K.
, and
Smith
,
K. O.
,
2003
, “
Rich-Catalytic Lean-Burn Combustion for Low-Single-Digit NOx Gas Turbines
,”
ASME
Paper No. GT-2003-38129.
10.
Alavandi
,
S. K.
,
Etemad
,
S.
, and
Baird
,
B. D.
,
2013
, “
Fuel Flexible Rich Catalytic Lean Burn System for Low BTU Fuels
,”
ASME
Paper No. GT2013-94585.
11.
Daniele
,
S.
,
Jansohn
,
P.
, and
Boulouchos
,
K.
,
2009
, “
Flame Front Characteristic and Turbulent Flame Speed of Lean Premixed Syngas Combustion at Gas Turbine Relevant Conditions
,”
ASME
Paper No. GT2009-59477.
12.
Daniele
,
S.
,
Jansohn
,
P.
, and
Boulouchos
,
K.
,
2008
, “
Lean Premixed Combustion of Undiluted Syngas at Gas Turbine Relevant Conditions: NOx Emissions and Lean Operational Limits
,”
ASME
Paper No. GT2008-50265.
13.
Zhang
,
Q.
,
Noble
,
D.
, and
Lieuwen
,
T.
,
2007
, “
Characterization of Fuel Composition Effects in H2/CO/CH4 Mixtures Upon Lean Blowout
,”
ASME J. Eng. Gas Turbines Power
,
129
(3), pp. 688–694.
14.
Littlejohn
,
D.
,
Cheng
,
R. K.
,
Noble
,
D. R.
, and
Lieuwen
,
T.
,
2009
, “
Laboratory Investigations of Low-Swirl Injectors Operating With Syngases
,”
ASME J. Eng. Gas Turbines Power
,
132
(
1
), p.
011502
.
15.
Strakey
,
P.
,
Sidwell
,
T.
, and
Ontko
,
J.
,
2007
, “
Investigation of the Effects of Hydrogen Addition on Lean Extinction in a Swirl Stabilized Combustor
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
3173
3180
.
16.
Baumgärtner, M. H.
, and
Sattelmayer, T.
, 2017, “
Improvement of the Turn-Down Ratio of Gas Turbines by Autothermal on Board Syngas Generation
,”
J. Global Power Propul. Soc.
,
1
, pp. 55–70.
17.
Sangl
,
J.
,
Mayer
,
C.
, and
Sattelmayer
,
T.
,
2011
, “
Dynamic Adaptation of Aerodynamic Flame Stabilization of a Premix Swirl Burner to Fuel Reactivity Using Fuel Momentum
,”
ASME J. Eng. Gas Turbines Power
,
133
(7), p.
071051
.
You do not currently have access to this content.