The reduction of pollution and noise emissions of modern aero engines represents a key concept to meet the requirements of the future air traffic. This requires an improvement in the understanding of combustion noise and its sources, as well as the development of accurate predictive tools. This is the major goal of the current study where the low-order thermo-acoustic network (LOTAN) solver and a hybrid computational fluid dynamics/computational aeroacoustics approach are applied on a generic premixed and pressurized combustor to evaluate their capabilities for combustion noise predictions. LOTAN solves the linearized Euler equations (LEE) whereas the hybrid approach consists of Reynolds-averaged Navier–Stokes (RANS) mean flow and frequency-domain simulations based on linearized Navier–Stokes equations (LNSE). Both solvers are fed in turn by three different combustion noise source terms which are obtained from the application of a statistical noise model on the RANS simulations and a post-processing of incompressible and compressible large eddy simulations (LES). In this way, the influence of the source model and acoustic solver is identified. The numerical results are compared with experimental data. In general, good agreement with the experiment is found for both the LOTAN and LNSE solvers. The LES source models deliver better results than the statistical noise model with respect to the amplitude and shape of the heat release spectrum. Beyond this, it is demonstrated that the phase relation of the source term does not affect the noise spectrum. Finally, a second simulation based on the inhomogeneous Helmholtz equation indicates the minor importance of the aerodynamic mean flow on the broadband noise spectrum.

References

References
1.
Dowling
,
A. P.
, and
Mahmoudi
,
Y.
,
2015
, “
Combustion Noise
,”
Proc. Combust. Inst.
,
35
(
1
), pp.
65
100
.
2.
Liu
,
T.
,
Dowling
,
A.
,
Swaminathan
,
N.
,
Morvant
,
R.
,
Macquisten
,
M.
, and
Caracciolo
,
L.
,
2013
, “
Prediction of Combustion Noise for an Aeroengine Combustor
,”
J. Propul. Power
,
30
(
1
), pp.
114
122
.
3.
Howe
,
M.
,
2010
, “
Indirect Combustion Noise
,”
J. Fluid Mech.
,
659
, pp.
267
288
.
4.
Cumpsty
,
N.
,
1979
, “
Jet Engine Combustion Noise: Pressure, Entropy and Vorticity Perturbations Produced by Unsteady Combustion or Heat Addition
,”
J. Sound Vib.
,
66
(
4
), pp.
527
544
.
5.
Kings
,
N.
,
Tao
,
W.
,
Scouflaire
,
P.
,
Richecoeur
,
F.
, and
Ducruix
,
S.
,
2016
, “
Experimental and Numerical Investigation of Direct and Indirect Combustion Noise Contributions in a Lean Premixed Laboratory Swirled Combustor
,”
ASME
Paper No. GT2016-57848.
6.
Livebardon
,
T.
,
Moreau
,
S.
,
Poinsot
,
T.
, and
Bouty
,
E.
,
2015
, “
Numerical Investigation of Combustion Noise Generation in a Full Annular Combustion Chamber
,”
AIAA
Paper No. 2015-2971.
7.
Ewert
,
R.
, and
Schröder
,
W.
,
2003
, “
Acoustic Perturbation Equations Based on Flow Decomposition via Source Filtering
,”
J. Comput. Phys.
,
188
(
2
), pp.
365
398
.
8.
Bui
,
T.
,
Schröder
,
W.
, and
Meinke
,
M.
,
2007
, “
Acoustic Perturbation Equations for Reacting Flows to Compute Combustion Noise
,”
Int. J. Aeroacoustics
,
6
(
4
), pp.
335
355
.
9.
Mühlbauer
,
B.
,
Ewert
,
R.
,
Kornow
,
O.
, and
Noll
,
B.
,
2010
, “
Evaluation of the RPM Approach for the Simulation of Broadband Combustion Noise
,”
AIAA J.
,
48
(
7
), pp.
1379
1390
.
10.
Grimm
,
F.
,
Noll
,
B.
,
Aigner
,
M.
,
Ewert
,
R.
, and
Dierke
,
J.
,
2014
, “
The Fast Random Particle Method for Combustion Noise Prediction
,”
AIAA
Paper No. 2014-2451.
11.
Ewert
,
R.
,
2006
, “
Broadband Slat Noise Prediction Based on CAA and Stochastic Sound Sources From a Fast Random Particle-Mesh (RPM) Method
,”
Comput. Fluids
,
37
(4), pp. 369–387.
12.
Hirsch
,
C.
,
Waesle
,
J.
,
Winkler
,
A.
, and
Sattelmayer
,
T.
,
2006
, “
A Spectral Model for the Sound Pressure From Turbulent Premixed Combustion
,”
31st International Symposium on Combustion
, Heidelberg, Germany, Aug. 6–11.
13.
Hirsch
,
C.
,
Wäsle
,
J.
,
Winkler
,
A.
, and
Sattelmayer
,
T.
,
2007
, “
A Spectral Model for the Sound Pressure From Turbulent Premixed Combustion
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
1435
1441
.
14.
Jörg
,
C.
,
2015
, “
Experimental Investigation and Spectral Modeling of Turbulent Combustion Noise From Premixed and Non-Premixed Flames
,”
Ph.D. thesis
, Technische Universität München, Munich, Germany.https://www.td.mw.tum.de/fileadmin/w00bso/www/Forschung/Dissertationen/joerg2015.pdf
15.
Anand
,
M. S.
,
Eggels
,
R.
,
Staufer
,
M.
,
Zedda
,
M.
, and
Zhu
,
J.
,
2013
, “
An Advanced Unstructured-Grid Finite-Volume Design System for Gas Turbine Combustion Analysis
,”
ASME
Paper No. GTINDIA2013-3537.http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=1838595
16.
Raynaud
,
F.
,
2015
, “
Towards Unsteady Simulation of Combustor-Turbine Interaction Using an Integrated Approach
,”
ASME
Paper No. GT2015-42110.
17.
Cerfacs
,
2008
, “
The AVBP Handbook
,” CERFACS, Toulouse, France.
18.
Lapeyre
,
C. J.
,
Mazur
,
M.
,
Scouflaire
,
P.
,
Richecoeur
,
F.
,
Ducruix
,
S.
, and
Poinsot
,
T.
,
2017
, “
Acoustically Induced Flashback in a Staged Swirl-Stabilized Combustor
,”
Flow Turbul. Combust.
,
98
(
1
), pp.
265
282
.
19.
Huet
,
M.
,
Vuillot
,
F.
,
Bertier
,
N.
,
Mazur
,
M.
,
Kings
,
N.
,
Tao
,
W.
,
Scouflaire
,
P.
,
Richecoeur
,
F.
,
Ducruix
,
S.
,
Lapeyre
,
L.
, and
Poinsot
,
T.
,
2016
, “
Recent Improvements in Combustion Noise Investigation: From Combustion Chamber to Nozzle Flow
,”
AerospaceLab J.
,
11
, p. AL11-10.
20.
Mazur
,
M.
,
Scouflaire
,
P.
,
Richecoeur
,
F.
, and
Ducruix
,
S.
,
2015
, “
Combustion Noise Studies of a Swirled Combustion Chamber With a Choked Nozzle Using High-Speed Diagnostics
,”
Aircraft Noise and Emissions Reduction Symposium (ANERS)/XNOISE Conference
, La Rochelle, France, Sept. 22–25.
21.
Kings
,
N.
,
Mazur
,
M.
,
Tao
,
W.
,
Scouflaire
,
P.
,
Richecoeur
,
F.
, and
Ducruix
,
S.
,
2015
, “
Experimental and Numerical Investigation on Combustion Noise Sources in a Choked Model Gas Turbine Combustor
,”
Aircraft Noise and Emissions Reduction Symposium (ANERS)/XNOISE Conference
, La Rochelle, France, Sept. 22–25.
22.
Gikadi
,
J.
,
Sattelmayer
,
T.
, and
Peschiulli
,
A.
,
2012
, “
Effects of the Mean Flow Field on the Thermo-Acoustic Stability of Aero-Engine Combustion Chambers
,”
ASME
Paper No. GT2012-69612.
23.
Gikadi
,
J.
,
2013
, “
Prediction of Acoustic Modes in Combustors Using Linearized Navier-Stokes Equations in Frequency Space
,”
Ph.D. thesis
, Technische Universität München, Munich, Germany.https://mediatum.ub.tum.de/doc/1166369/1166369.pdf
24.
Ullrich
,
W.
, and
Sattelmayer
,
T.
,
2015
, “
Transfer Functions of Acoustic, Entropy and Vorticity Waves in an Annular Model Combustor and Nozzle for the Prediction of the Ratio Between Indirect and Direct Combustion Noise
,”
AIAA
Paper No. 2015-2972.
25.
Ullrich
,
W.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2016
, “
Computation of Combustion Noise From a Premixed and Pressurized Propane Flame Using Statistical Noise Modeling
,”
AIAA
Paper No. 2016-4590.
26.
Strahle
,
W.
,
1972
, “
Some Results in Combustion Generated Noise
,”
J. Sound Vib.
,
23
(
1
), pp.
113
125
.
27.
Chu
,
B.
, and
Kovásznay
,
L.
,
1957
, “
Non-Linear Interactions in a Viscous Heat-Conducting Compressible Gas
,”
Combust. Flame
,
3
(5), pp. 494–514.
28.
Poinsot
,
T.
, and
Veynante
,
D.
,
2005
,
Theoretical and Numerical Combustion
,
2nd ed.
,
RT Edwards
, Philadelphia, PA.
29.
Ullrich
,
W.
,
Lackhove
,
K.
,
Fischer
,
A.
,
Hirsch
,
C.
,
Sattelmayer
,
T.
,
Sadiki
,
A.
, and
Staufer
,
M.
,
2017
, “
Combustion Noise Prediction Using Linearized Navier–Stokes Equations and Incompressible Large-Eddy Simulation Sources
,”
J. Propul. Power
, epub.
30.
Dowling
,
A.
, and
Stow
,
S.
,
2003
, “
Acoustic Analysis of Gas Turbine Combustors
,”
AIAA J. Propul. Power
,
19
(
5
), pp.
751
764
.
31.
Mazur
,
M.
,
Tao
,
W.
,
Scouflaire
,
P.
,
Richecoeur
,
F.
, and
Ducruix
,
S.
,
2015
, “
Experimental and Analytical Study of the Acoustic Properties of a Gas Turbine Model Combustor With a Chocked Nozzle
,”
ASME
Paper No. GT2015-43013.
32.
Stow
,
S.
, and
Dowling
,
A.
,
2001
, “
Thermoacoustic Oscillations in an Annular Combustor
,”
ASME
Paper No. 2001-GT-0037.
33.
Stow
,
S.
, and
Dowling
,
A.
,
2009
, “
A Time-Domain Network Model for Nonlinear Thermoacoustic Oscillations
,”
ASME J. Eng. Gas Turbines Power
,
131
(
3
), p.
031502
.
34.
Mahmoudi
,
Y.
,
Dowling
,
A.
, and
Stow
,
S.
,
2015
, “
Direct and Indirect Combustion Noise in an Idealised Combustor
,”
25th International Colloquium on Dynamic of Explosions and Reactive Systems
(
ICDERS
), Leeds, UK, Aug. 2–7.https://www.researchgate.net/publication/280925974_Direct_and_Indirect_Combustion_Noise_in_an_Idealised_Combustor
35.
Nicoud
,
F.
, and
Wieczorek
,
K.
,
2009
, “
About the Zero Mach Number Assumption in the Calculation of Thermoacoustic Instabilities
,”
Int. J. Spray Combust. Dyn.
,
1
(1), pp. 67–112.http://journals.sagepub.com/doi/pdf/10.1260/175682709788083335
36.
Marble
,
F.
, and
Candel
,
S.
,
1977
, “
Acoustic Disturbances From Gas Non-Uniformities Convected Through a Nozzle
,”
J. Sound Vib.
,
55
(
2
), pp.
225
243
.
37.
ANSYS
,
2011
, “
ANSYS FLUENT Theory Guide
,” ANSYS, Inc., Canonsburg, PA.
38.
Stow
,
S.
,
Dowling
,
A.
, and
Hynes
,
T.
,
2002
, “
Reflection of Circumferential Modes in a Choked Nozzle
,”
J. Fluid Mech.
,
467
, pp.
215
239
.
39.
Hughes
,
T.
,
Franca
,
L.
, and
Hulbert
,
G.
,
1989
, “
A New Finite Element Formulation for Computational Fluid Dynamics—VIII: The Galerkin/Least-Squares Method for Advective-Diffusive Equations
,”
Comput. Methods Appl. Mech. Eng.
,
73
(
2
), pp.
173
189
.
40.
Weyermann
,
F.
,
2010
, “
Numerische berechnung der emission verbrennungsinduzierten lärms automobiler zusatzheizungen
,” Ph.D. thesis, Technische Universität München, Munich, Germany.
You do not currently have access to this content.