The concept of morphing geometry to control and stabilize the flow has been proposed and applied in several aeronautic and wind turbine applications. We studied the effect of a similar passive system applied on an axial fan blade, analyzing potential benefits and disadvantages associated to the passive coupling between fluid and structure dynamics. The present work completes a previous study made at the section level, giving a view also on the three-dimensional (3D) effects. We use the numerical computation to simulate the system, which defines a complex fluid–structure interaction (FSI) problem. In order to do that, an in-house finite element (FE) solver, already used in the previous study, is applied to solve the coupled dynamics.

References

References
1.
Gern
,
F. H.
,
Inman
,
D. J.
, and
Kapania
,
R. K.
,
2002
, “
Structural and Aeroelastic Modeling of General Planform Wings With Morphing Airfoils
,”
AIAA J.
,
40
(
4
), pp.
628
637
.
2.
Barbarino
,
S.
,
Gandhi
,
F.
, and
Webster
,
S. D.
,
2011
, “
Design of Extendable Chord Sections for Morphing Helicopter Rotor Blades
,”
J. Intell. Mater. Syst. Struct.
,
22
(
9
), pp.
891
905
.
3.
Lachenal
,
X.
,
Daynes
,
S.
, and
Weaver
,
P. M.
,
2013
, “
Review of Morphing Concepts and Materials for Wind Turbine Blade Applications
,”
Wind Energy
,
16
(
2
), pp.
283
307
.
4.
Ai
,
Q.
,
Azarpeyvand
,
M.
,
Lachenal
,
X.
, and
Weaver
,
P. M.
,
2016
, “
Aerodynamic and Aeroacoustic Performance of Airfoils With Morphing Structures
,”
Wind Energy
,
19
(
7
), pp.
1325
1339
.
5.
Corsini
,
A.
,
Castorrini
,
A.
,
Boezi
,
M.
, and
Rispoli
,
F.
,
2015
, “
Numerical Study on Active and Passive Trailing Edge Morphing Applied to a Multi-MW Wind Turbine Section
,”
Sixth International Conference on Computational Methods in Marine Engineering
(
MARINE
), Rome, Italy, June 15–17, pp. 106–118.https://sapienza.pure.elsevier.com/en/publications/numerical-study-on-active-and-passive-trailing-edge-morphing-appl
6.
Castorrini
,
A.
,
Corsini
,
A.
,
Sheard
,
A.
, and
Rispoli
,
F.
,
2016
, “
Numerical Study on the Passive Control of the Aeroelastic Response in Large Axial Fans
,”
ASME
Paper No. GT2016-57306.
7.
Kirk
,
B. S.
,
Peterson
,
J. W.
,
Stogner
,
R. H.
, and
Carey
,
G. F.
,
2006
, “
Libmesh: A C++ Library for Parallel Adaptive Mesh Refinement/Coarsening Simulations
,”
Eng. Comput.
,
22
(
3–4
), pp.
237
254
.
8.
Hughes
,
T. J.
,
Liu
,
W. K.
, and
Zimmermann
,
T. K.
,
1981
, “
Lagrangian-Eulerian Finite Element Formulation for Incompressible Viscous Flows
,”
Comput. Methods Appl. Mech. Eng.
,
29
(
3
), pp.
329
349
.
9.
Bazilevs
,
Y.
,
Hsu
,
M.-C.
,
Takizawa
,
K.
, and
Tezduyar
,
T. E.
,
2012
, “
ALE-VMS and ST-VMS Methods for Computer Modeling of Wind-Turbine Rotor Aerodynamics and Fluid–Structure Interaction
,”
Math. Models Methods Appl. Sci.
,
22
(
Suppl. 2
), p.
1230002
.
10.
Pope
,
S. B.
,
2001
, “
Turbulent Flows
,”
Meas. Sci. Technol.
,
12
(11), p. 2020.
11.
Launder
,
B.
, and
Sharma
,
B.
,
1974
, “
Application of the Energy-Dissipation Model of Turbulence to the Calculation of Flow Near a Spinning Disc
,”
Lett. Heat Mass Transfer
,
1
(
2
), pp.
131
137
.
12.
Hughes
,
T. J.
,
1987
,
The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
,
Prentice-Hall
,
Upper Saddle River, NJ
.
13.
Chung
,
J.
, and
Hulbert
,
G.
,
1993
, “
A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method
,”
ASME J. Appl. Mech.
,
60
(
2
), pp.
371
375
.
14.
Stein
,
K.
,
Tezduyar
,
T. E.
, and
Benney
,
R.
,
2004
, “
Automatic Mesh Update With the Solid-Extension Mesh Moving Technique
,”
Comput. Methods Appl. Mech. Eng.
,
193
(
21
), pp.
2019
2032
.
15.
Brooks
,
A. N.
, and
Hughes
,
T. J.
,
1982
, “
Streamline Upwind/Petrov-Galerkin Formulations for Convection Dominated Flows With Particular Emphasis on the Incompressible Navier–Stokes Equations
,”
Comput. Methods Appl. Mech. Eng.
,
32
(
1–3
), pp.
199
259
.
16.
Hughes
,
T. J.
,
Franca
,
L. P.
, and
Hulbert
,
G. M.
,
1989
, “
A New Finite Element Formulation for Computational Fluid Dynamics: Viii. The Galerkin/Least-Squares Method for Advective-Diffusive Equations
,”
Comput. Methods Appl. Mech. Eng.
,
73
(
2
), pp.
173
189
.
17.
Tezduyar
,
T. E.
,
1991
, “
Stabilized Finite Element Formulations for Incompressible Flow Computations
,”
Adv. Appl. Mech.
,
28
, pp.
1
44
.
18.
Corsini
,
A.
,
Rispoli
,
F.
,
Santoriello
,
A.
, and
Tezduyar
,
T. E.
,
2006
, “
Improved Discontinuity-Capturing Finite Element Techniques for Reaction Effects in Turbulence Computation
,”
Comput. Mech.
,
38
(4–5), pp. 356–364.
You do not currently have access to this content.