A detailed elastogasdynamic model of a preloaded three-pad air foil journal bearing is presented. Bump and top foil deflections are herein calculated with a nonlinear beamshell theory according to Reissner. The two-dimensional pressure distribution in each bearing pad is described by the Reynolds equation for compressible fluids. The assembly preload is calculated by simulating the assembly process of top foil, bump foil, and shaft. Most advantageously, there is no need for the definition of an initial radial clearance in the presented model. With this model, the influence of the assembly preload on the static bearing hysteresis as well as on the aerodynamic bearing performance is investigated. For the purpose of model validation, the predicted hysteresis curves are compared with measured curves. The numerically predicted and the measured hysteresis curves show a good agreement. The numerical predictions exhibit that the assembly preload increases the elastic foil structural stiffness (in particular for moderate shaft displacements) and the bearing damping. It is observed that the effect of the fluid film on the overall bearing stiffness depends on the assembly preload: For lightly preloaded bearings, the fluid film affects the overall bearing stiffness considerably, while for heavily preloaded bearings the effect is rather small for a wide range of reaction forces. Furthermore, it is shown that the assembly preload increases the friction torque significantly.

References

References
1.
Dellacorte
,
C.
, and
Valco
,
M. J.
,
2000
, “
Load Capacity Estimation of Foil Air Journal Bearings for Oil-Free Turbomachinery Applications
,”
Tribol Trans.
,
43
(
4
), pp.
795
801
.
2.
Radil
,
K.
,
Howard
,
S.
, and
Dykas
,
B.
,
2002
, “
The Role of Radial Clearance on the Performance of Foil Air Bearings
,”
Tribol. Trans.
,
45
(
4
), pp.
485
490
.
3.
Rubio
,
D.
, and
San Andrés
,
L.
,
2006
, “
Bump-Type Foil Bearing Structural Stiffness: Experiments and Predictions
,”
ASME J. Eng. Gas Turbines Power
,
128
(
3
), pp.
653
660
.
4.
Heshmat
,
H.
,
Shapiro
,
W.
, and
Gray
,
S.
,
1982
, “
Development of Foil Journal Bearings for High Load Capacity and High Speed Whirl Stability
,”
ASME J Lubr. Technol.
,
104
(
2
), pp.
149
156
.
5.
Kim
,
T. H.
, and
San Andrés
,
L.
,
2009
, “
Effects of a Mechanical Preload on the Dynamic Force Response of Gas Foil Bearings: Measurements and Model Predictions
,”
Tribol Trans.
,
52
(
4
), pp.
569
580
.
6.
Sim
,
K.
,
Koo
,
B.
,
Sung Lee
,
J.
, and
Ho Kim
,
T.
,
2014
, “
Effects of Mechanical Preloads on the Rotordynamic Performance of a Rotor Supported on Three-Pad Gas Foil Journal Bearings
,”
ASME J. Eng. Gas Turbines Power
,
136
(
12
), p.
122503
.
7.
Kim
,
D.
,
2007
, “
Parametric Studies on Static and Dynamic Performance of Air Foil Bearings With Different Top Foil Geometries and Bump Stiffness Distributions
,”
ASME J. Tribol.
,
129
(
2
), pp.
354
364
.
8.
Kim
,
D.
, and
Lee
,
D.
,
2010
, “
Design of Three-Pad Hybrid Air Foil Bearing and Experimental Investigation on Static Performance at Zero Running Speed
,”
ASME J. Eng. Gas Turbines Power
,
132
(
12
), p.
122504
.
9.
Walowit
,
J. A.
, and
Anno
,
J. N.
,
1975
,
Modern Developments in Lubrication Mechanics
,
Applied Science Publisher Ltd.
,
London
.
10.
Heshmat
,
H.
,
Walowit
,
J. A.
, and
Pinkus
,
O.
,
1983
, “
Analysis of Gas-Lubricated Foil Journal Bearings
,”
ASME J. Lubr. Technol.
,
105
(
4
), pp.
647
655
.
11.
Iordnaoff
,
I.
,
1999
, “
Analysis of an Aerodynamic Compliant Foil Thrust Bearing: Method for a Rapid Design
,”
ASME J. Tribol.
,
121
(
4
), pp.
816
822
.
12.
Kim
,
D.
,
Ezeka
,
C.
, and
Kumar
,
M.
,
2007
, “
Revisit to Stiffness of Bump Foils in Air Foil Bearings
,”
ASME
Paper No. IJTC2007-44319.
13.
Arghir
,
M.
,
Deville
,
L.
, and
Pion
,
J.-B.
,
2007
, “
About the Stiffness of Bumps in Aerodynamic Foil Bearings
,” Society of Tribologists and Lubrication Engineers (STLE)
70th Annual Meeting and Exhibition
, Dallas, TX, May 17–21.http://www.stle.org/Shared_Content/Extended_Abstracts/EA_AM2015/Fluid_Film_Bearings/About%20the%20Stiffness%20of%20Bumps%20in%20Aerodynamic%20Foil%20Bearings.aspx
14.
Ku
,
C.-P. R.
, and
Heshmat
,
H.
,
1992
, “
Compliant Foil Structural Stiffness Analysis—Part I: Theoretical Model Including Strip and Variable Bump Foil Geometry
,”
ASME J. Tribol.
,
114
(
2
), pp.
394
400
.
15.
Ku
,
C. P. R.
, and
Heshmat
,
H.
,
1994
, “
Structural Stiffness and Coulomb Damping in Compliant Foil Journal Bearings: Theoretical Considerations
,”
Tribol. Trans.
,
37
(
3
), pp.
525
533
.
16.
Le Lez
,
S.
,
Arghir
,
M.
, and
Frene
,
J.
,
2007
, “
A New Bump-Type Foil Bearing Structure Analytical Model
,”
ASME J. Eng. Gas Turbines Power
,
129
(
4
), pp.
1047
1057
.
17.
Carpino
,
M.
,
Medvetz
,
L. A.
, and
Peng
,
J.-P.
,
1994
, “
Effects of Membrane Stresses in the Prediction of Foil Bearing Performance©
,”
Tribol. Trans.
,
37
(
1
), pp.
43
50
.
18.
San Andrés
,
L.
, and
Kim
,
T. H.
,
2009
, “
Analysis of Gas Foil Bearings Integrating FE Top Foil Models
,”
Tribol. Int.
,
42
(
1
), pp.
111
120
.
19.
Feng
,
K.
, and
Kaneko
,
S.
,
2010
, “
Analytical Model of Bump-Type Foil Bearings Using a Link-Spring Structure and a Finite-Element Shell Model
,”
ASME J. Tribol.
,
132
(
2
), p.
021706
.
20.
Leister
,
T.
,
Baum
,
C.
, and
Seemann
,
W.
,
2016
, “
Computational Analysis of Foil Air Journal Bearings Using a Runtime-Efficient Segmented Foil Model
,”
International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
(
ISROMAC
), Honolulu, HI, Apr. 10–15.http://isromac-isimet.univ-lille1.fr/upload_dir/abstract/3.Leister_Extended_Abstract_ISROMAC_2016.pdf
21.
Le Lez
,
S.
,
Arghir
,
M.
, and
Frene
,
J.
,
2007
, “
Static and Dynamic Characterization of a Bump-Type Foil Bearing Structure
,”
ASME J. Tribol.
,
129
(
1
), pp.
75
83
.
22.
Żywica
,
G.
,
2011
, “
The Static Performance Analysis of the Foil Bearing Structure
,”
Acta Mech. Autom.
,
5
(
4
), pp.
119
122
.http://www.actawm.pb.edu.pl/volume/vol5no4/ZYWICA_EN_2011_108.pdf
23.
Lee
,
D.-H.
,
Kim
,
Y.-C.
, and
Kim
,
K.-W.
,
2008
, “
The Static Performance Analysis of Foil Journal Bearings Considering Three-Dimensional Shape of the Foil Structure
,”
ASME J. Tribol.
,
130
(
3
), p.
031102
.
24.
Lehn
,
A.
,
Mahner
,
M.
, and
Schweizer
,
B.
,
2016
, “
Elasto-Gasdynamic Modeling of Air Foil Thrust Bearings With a Two-Dimensional Shell Model for Top and Bump Foil
,”
Tribol. Int.
,
100
, pp.
48
59
.
25.
Mahner
,
M.
,
Li
,
P.
,
Lehn
,
A.
, and
Schweitzer
,
B.
,
2016
, “
Elastogasdynamic Model for Air Foil Journal Bearings: Hysteresis Prediction Including Preloading Effects
,”
Society of Tribologists and Lubrication Engineers (STLE)
,
71st Annual Meeting and Exhibition
, Las Vegas, NV, May 15–19.https://www.stle.org/images/pdf/STLE_ORG/AM2016%20Presentations/Fluid%20Film%20Bearings/STLE2016_Fluid%20Film%20Bearings%20VI_Session%206H_M.%20Mahner_Elastogasdynamic%20Model%20for%20Air%20Foil%20Journal%20Bearings.pdf
26.
Reissner
,
E.
,
1972
, “
On One-Dimensional Finite-Strain Beam Theory: The Plane Problem
,”
J. Appl. Math. Phys. (ZAMP)
,
23
(
5
), pp.
795
804
.
27.
Libai
,
A.
, and
Simmonds
,
J. G.
,
2005
,
The Nonlinear Theory of Elastic Shells
,
Cambridge University Press
, Cambridge, UK.
28.
Hu
,
Y.-Z.
, and
Zhu
,
D.
,
2000
, “
A Full Numerical Solution to the Mixed Lubrication in Point Contacts
,”
ASME J. Tribol.
,
122
(
1
), pp.
1
9
.
29.
Xiong
,
S.
,
Wang
,
Q. J.
,
Liu
,
W. K.
,
Yang
,
Q.
,
Vaidyanathan
,
K.
,
Zhu
,
D.
, and
Lin
,
C.
,
2006
, “
Approaching Mixed Elastohydrodynamic Lubrication of Smooth Journal-Bearing Systems With Low Rotating Speed
,”
Tribol Trans.
,
49
(
4
), pp.
598
610
.
30.
San Andrés
,
L.
, and
Kim
,
T. H.
,
2007
, “
Improvements to the Analysis of Gas Foil Bearings: Integration of Top Foil 1D and 2D Structural Models
,”
ASME
Paper No. GT2007-27249.
31.
Bertsekas
,
D. P.
,
1982
, “
Constrained Optimization and Lagrange Multiplier Methods
,”
Computer Science and Applied Mathematics
,
Academic Press
,
San Diego, CA
.
32.
Wriggers
,
P.
,
2006
,
Computational Contact Mechanics
,
Springer-Verlag
,
Berlin
.
33.
Conlon
,
M.
,
Dadouche
,
A.
,
Dmochowski
,
W.
,
Payette
,
R.
, and
Bédard
,
J.-P.
,
2009
, “
A Comparison of the Steady-State and Dynamic Performance of First-and Second-Generation Foil Bearings
,”
ASME
Paper No. GT2010-23683.
34.
Conlon
,
M.
,
Dadouche
,
A.
,
Dmochowski
,
W.
,
Payette
,
R.
,
Bédard
,
J.-P.
, and
Liko
,
B.
,
2010
, “
Experimental Evaluation of Foil Bearing Performance: Steady-State and Dynamic Results
,”
ASME
Paper No. GT2009-60186.
35.
Hoffmann
,
R.
,
Munz
,
O.
,
Pronobis
,
T.
,
Barth
,
E.
, and
Liebich
,
R.
,
2016
, “
A Valid Method of Gas Foil Bearing Parameter Estimation: A Model Anchored on Experimental Data
,”
Proc. Inst. Mech. Eng. Part C
, epub.
36.
Ku
,
C. P. R.
, and
Heshmat
,
H.
,
1993
, “
Compliant Foil Bearing Structural Stiffness Analysis-Part II: Experimental Investigation
,”
ASME J. Tribol
,
115
(
3
), pp.
364
369
.
You do not currently have access to this content.