This paper presents the development of a simulation tool for modeling the transient behavior of micro-CHP (combined heat and power) systems, equipped with both thermal and electric storage units and connected with both electric and district heating grid (DHG). The prime mover (PM) considered in this paper is an internal combustion reciprocating engine (ICE), which is currently the only well-established micro-CHP technology. Different users, characterized by different demands of electric and thermal energy, both in terms of absolute value and electric-to-thermal energy ratio, are analyzed in this paper. Both summer and winter hourly trends of electric and thermal energy demand are simulated by using literature data. The results present a comprehensive energy analysis of all scenarios on a daily basis, in terms of both user demand met and energy share among system components. The transient response of the PM and the thermal energy storage (TES) is also analyzed for the two scenarios with the lowest and highest daily energy demand, together with the trend over time of the state of charge of both thermal and electric energy storage (EES).

References

References
1.
Macchi
,
E.
,
Campanari
,
S.
, and
Silva
,
P.
,
2006
,
La Microcogenerazione a Gas Naturale
,
Polipress
, Bologna, Italy (in Italian).
2.
Chicco
,
G.
, and
Mancarella
,
P.
,
2009
, “
Distributed Multi-Generation: A Comprehensive View
,”
Renewable Sustainable Energy Rev.
,
13
(
3
), pp.
535
551
.
3.
Bianchi
,
M.
, and
Spina
,
P. R.
,
2010
, “
Integrazione di Sistemi Cogenerativi Innovativi di Piccolissima Taglia Nelle Reti di Distribuzione Dell'energia Elettrica, Termica e Frigorifera
,” Rome, Italy, Report No. RdS/2010/220 (in Italian).
4.
Barbieri
,
E. S.
,
Spina
,
P. R.
, and
Venturini
,
M.
,
2012
, “
Analysis of Innovative Micro-CHP Systems to Meet Household Energy Demands
,”
Appl. Energy
,
97
, pp.
723
733
.
5.
Maghanki
,
M. M.
,
Ghobadian
,
B.
,
Najafi
,
G.
, and
Galogah
,
R. J.
,
2013
, “
Micro Combined Heat and Power (MCHP) Technologies and Application
,”
Renewable Sustainable Energy Rev.
,
28
, pp.
510
524
.
6.
Bianchi
,
M.
,
De Pascale
,
A.
, and
Spina
,
P. R.
,
2012
, “
Guidelines for Residential Micro-CHP Systems Design
,”
Appl. Energy
,
97
, pp.
673
685
.
7.
Campos Celador
,
A.
,
Odriozola
,
M.
, and
Sala
,
J. M.
,
2011
, “
Implications of the Modelling of Stratified Hot Water Storage Tanks in the Simulation of CHP Plants
,”
Energy Convers. Manage.
,
52
(8–9), pp.
3018
3026
.
8.
Chesi
,
A.
,
Ferrara
,
G.
,
Ferrari
,
L.
,
Magnani
,
S.
, and
Tarani
,
F.
,
2013
, “
Influence of the Heat Storage Size on the Plant Performances in a Smart User Case Study
,”
Appl. Energy
,
112
, pp.
1454
1465
.
9.
Blarke
,
M. B.
, and
Lund
,
H.
,
2008
, “
The Effectiveness of Storage and Relocation Options in Renewable Energy Systems
,”
Renewable Energy
,
33
(
7
), pp.
1499
1507
.
10.
Prando
,
D.
,
Patuzzi
,
F.
,
Pernigotto
,
G.
,
Gasparella
,
A.
, and
Baratieri
,
M.
,
2014
, “
Biomass Gasification System for Residential Application: An Integrated Simulation Approach
,”
Appl. Therm. Eng.
,
71
(
1
), pp.
152
160
.
11.
Cau
,
G.
,
Cocco
,
D.
, and
Petrollese
,
M.
,
2014
, “
Modeling and Simulation of an Isolated Hybrid Micro-Grid With Hydrogen Production and Storage
,”
Energy Procedia
,
45
, pp.
12
21
.
12.
Dorer
,
V.
, and
Weber
,
A.
,
2009
, “
Energy and CO2 Emissions Performance Assessment of Residential Micro-Cogeneration Systems With Dynamic Whole-Building Simulation Programs
,”
Energy Convers. Manage.
,
50
(
3
), pp.
648
657
.
13.
Brandoni
,
C.
,
Arteconi
,
A.
,
Ciriachi
,
G.
, and
Polonara
,
F.
,
2014
, “
Assessing the Impact of Micro-Generation Technologies on Local Sustainability
,”
Energy Convers. Manage.
,
87
, pp.
1281
1290
.
14.
Comodi
,
G.
,
Cioccolanti
,
L.
, and
Renzi
,
M.
,
2014
, “
Modelling the Italian Household Sector at the Municipal Scale: Micro-CHP, Renewables and Energy Efficiency
,”
Energy
,
68
, pp.
92
103
.
15.
Angrisani
,
G.
,
Canelli
,
M.
,
Roselli
,
C.
, and
Sasso
,
M.
,
2015
, “
Microcogeneration in Building With Low Energy Demand in Load Sharing Application
,”
Energy Convers. Manage.
,
100
, pp.
78
89
.
16.
Park
,
C.
,
Kim
,
C.
,
Lee
,
S.
,
Lim
,
G.
,
Lee
,
S.
, and
Choi
,
Y.
,
2015
, “
Effect on Control Strategy on Performance and Emissions of Natural Gas Engine for Cogeneration System
,”
Energy
,
82
, pp.
353
360
.
17.
Mongibello
,
L.
,
Bianco
,
N.
,
Caliano
,
M.
, and
Graditi
,
G.
,
2015
, “
Influence of Heat Dumping on the Operation of Residential Micro-CHP Systems
,”
Appl. Energy
,
160
, pp.
206
220
.
18.
Thomas
,
B.
,
2014
, “
Experimental Determination of Efficiency Factors for Different Micro-CHP Units According to the Standard DIN 4709
,”
Appl. Therm. Eng.
,
71
(
2
), pp.
721
728
.
19.
Alahäivälä
,
A.
,
Heß
,
T.
,
Cao
,
S.
, and
Lehtonen
,
M.
,
2015
, “
Analyzing the Optimal Coordination of a Residential Micro-CHP System With a Power Sink
,”
Appl. Energy
,
149
, pp.
326
337
.
20.
Bianchi
,
M.
,
De Pascale
,
A.
,
Melino
,
F.
, and
Peretto
,
A.
,
2014
, “
Performance Prediction of Micro-CHP Systems Using Simple Virtual Operating Cycles
,”
Appl. Therm. Eng.
,
71
(
2
), pp.
771
779
.
21.
Gu
,
W.
,
Wu
,
Z.
,
Bo
,
R.
,
Liu
,
W.
,
Zhou
,
G.
,
Chen
,
W.
, and
Wu
,
Z.
,
2014
, “
Modelling, Planning and Optimal Energy Management of Combined Cooling, Heating and Power Microgrid: A Review
,”
Electr. Power Energy Syst.
,
54
, pp.
26
37
.
22.
Darkovich
,
K.
,
Kenney
,
B.
,
MacNeil
,
D. D.
, and
Armstrong
,
M. M.
,
2015
, “
Control Strategy and Cycling Demands for Li-Ion Storage Batteries in Residential Micro-Cogeneration Systems
,”
Appl. Energy
,
141
, pp.
32
41
.
23.
Fares
,
R. L.
, and
Webber
,
M. E.
,
2015
, “
Combining a Dynamic Battery Model With High-Resolution Smart Grid Data to Assess Microgrid Islanding Lifetime
,”
Appl. Energy
,
137
, pp.
482
489
.
24.
Spitalny
,
L.
,
Myrzik
,
J. M. A.
, and
Mehlhorn
,
T.
,
2014
, “
Estimation of the Economic Addressable Market of Micro-CHP and Heat Pumps Based on the Status of the Residential Building Sector in Germany
,”
Appl. Therm. Eng.
,
71
(
2
), pp.
838
846
.
25.
Torchio
,
M. F.
,
2015
, “
Comparison of District Heating CHP and Distributed Generation CHP With Energy, Environmental, and Economic Criteria for Northern Italy
,”
Energy Convers. Manage.
,
92
, pp.
114
128
.
26.
Adam
,
A.
,
Fraga
,
E. S.
, and
Brett
,
D. J. L.
,
2015
, “
Options for Residential Building Services Design Using Fuel Cell Based Micro-CHP and the Potential for Heat Integration
,”
Appl. Energy
,
138
, pp.
685
694
.
27.
Menon
,
R. P.
,
Marechal
,
F.
, and
Paolone
,
M.
,
2016
, “
Intra-Day Electro-Thermal Model Predictive Control for Polygeneration Systems in Microgrids
,”
Energy
,
104
, pp.
308
319
.
28.
Shaneb
,
O. A.
,
Taylor
,
P. C.
, and
Coates
,
G.
,
2012
, “
Optimal Online Operation of Residential μCHP Systems Using Linear Programming
,”
Energy Build.
,
44
, pp.
17
25
.
29.
Su
,
W.
, and
Wang
,
J.
,
2012
, “
Energy Management Systems in Microgrid Operations
,”
Electr. J.
,
25
(8), pp.
45
60
.
30.
Mahmoud
,
M. S.
,
Azher Hussain
,
S.
, and
Abido
,
M. A.
,
2014
, “
Modeling and Control of Microgrid: An Overview
,”
J. Franklin Inst.
,
351
(
5
), pp.
2822
2859
.
31.
Gupta
,
R. A.
, and
Gupta
,
N. K.
,
2015
, “
A Robust Optimization Based Approach for Microgrid Operation in Deregulated Environment
,”
Energy Convers. Manage.
,
93
, pp.
121
131
.
32.
Zidan
,
A.
,
Gabbar
,
H. A.
, and
Eldessouky
,
A.
,
2015
, “
Optimal Planning of Combined Heat and Power Systems Within Microgrids
,”
Energy
,
93
(Part 1), pp.
235
244
.https://doi.org/10.1016/j.energy.2015.09.039
33.
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Venturini
,
M.
,
2013
, “
Optimal Allocation of Thermal, Electric and Cooling Loads Among Generation Technologies in Household Applications
,”
Appl. Energy
,
112
, pp.
205
214
.
34.
Hafez
,
O.
, and
Bhattacharya
,
K.
,
2012
, “
Optimal Planning and Design of a Renewable Energy Based Supply System for Microgrids
,”
Renewable Energy
,
45
, pp.
7
15
.
35.
Radosavljević
,
J.
,
Jevtić
,
M.
, and
Klimenta
,
D.
,
2016
, “
Energy and Operation Management of a Microgrid Using Particle Swarm Optimization
,”
Eng. Optim.
,
48
(
5
), pp.
811
830
.
36.
Barberis
,
S.
,
Rivarolo
,
M.
,
Traverso
,
A.
, and
Massardo
,
A. F.
,
2016
, “
Thermo-Economic Analysis of the Energy Storage Role in a Real Polygenerative District
,”
J. Energy Storage
,
5
, pp.
187
202
.
37.
Zachar
,
M.
, and
Daoutidis
,
P.
,
2015
, “
Understanding and Predicting the Impact of Location and Load on Microgrid Design
,”
Energy
,
90
(Part 1), pp.
1005
1023
.
38.
Venturini
,
M.
,
2005
, “
Development and Experimental Validation of a Compressor Dynamic Model
,”
ASME J. Turbomach.
,
127
(
3
), pp.
599
608
.
39.
Morini
,
M.
,
Pinelli
,
M.
, and
Venturini
,
M.
,
2009
, “
Analysis of Biogas Compression System Dynamics
,”
Appl. Energy
,
86
(
11
), pp.
2466
2475
.
40.
Ippolito
,
F.
, and
Venturini
,
M.
,
2017
, “
Micro-CHP System Transient Operation in a Residential User Microgrid
,” 30th International Conference on Efficiency, Cost, Optimisation, Simulation and Environmental Impact of Energy Systems (ECOS), July 2–6, San Diego, CA, Paper No. 16.
41.
Portoraro
,
A.
,
Ruscica
,
G.
, and
Badami
,
M.
,
2010
, “
Micro-Cogenerazione nel Settore Residenziale con l'utilizzo di Motori a Combustione Interna: Sviluppo di un Modello Matematico per la Simulazione Oraria e Analisi di un Caso Reale
,” Rome, Italy, Report No. RdS/2010/227 (in Italian).
42.
Onovwiona
,
H. I.
,
Ismet Ugursal
,
V.
, and
Fung
,
A. S.
,
2007
, “
Modeling of Internal Combustion Engine Based Cogeneration Systems for Residential Applications
,”
Appl. Therm. Eng.
,
27
(5–6), pp.
848
861
.
43.
Malavolta
,
M.
,
Beyene
,
A.
, and
Venturini
,
M.
,
2010
, “
Experimental Implementation of a Micro-Scale ORC-Based CHP Energy System for Domestic Applications
,”
ASME
Paper No. IMECE2010-37208.
44.
Ziviani
,
D.
,
Beyene
,
A.
, and
Venturini
,
M.
,
2014
, “
Advances and Challenges in ORC Systems Modeling for Low Grade Thermal Energy Recovery
,”
Appl. Energy
,
121
, pp.
79
95
.
45.
SenerTec, 2017, “SenerTec,” SenerTec, Schweinfurt, Germany, accessed July 29, 2017, https://senertec.com/
You do not currently have access to this content.