This paper presents a novel approach to real-time modeling of disk temperature distribution using proper orthogonal decomposition (POD). The method combines singular value decomposition (SVD) techniques with a series of low-order transfer functions to predict the disk's thermal response over a typical flight. The model uses only typically available full authority digital electronic control (FADEC) measurements to predict temperature with accuracy of ±30 K over the whole flight cycle. A Kalman filter has also been developed based on a single temperature measurement, and the location of the measurement has been assessed in order to select the most appropriate target for instrumentation. Points all around the front and back of the disk have been assessed, and the best practice result is found to be near the center of the disk neck. This represents a compromise between matching the fast dynamic response of the rim, with the slower dynamics of the cob. The new model has been validated against an independent flight simulation.

References

References
1.
Boyd-Lee
,
A. D.
,
Harrison
,
G. F.
, and
Henderson
,
M. B.
,
2001
, “
Evaluation of Standard Life Assessment Procedures and Life Extension Methodologies for Fracture-Critical Components
,”
Int. J. Fatigue
,
23
(Suppl. 1), pp.
11
19
.
2.
Boyd-Lee
,
A.
,
Painter
,
D.
, and
Harrison
,
G. F.
,
2001
, “
Life Extension Methodologies and Risk-Based Inspection in the Management of Fracture Critical Aeroengine Components
,” RTO A VT Specialists' Meeting on Life Management Techniques for Ageing Air Vehicles, Manchester, UK, Oct. 8–11.
3.
Lykins
,
C.
,
Thomson
,
D.
, and
Pomfret
,
C.
,
1994
, “
The Air Force's Application of Probabilistics to Gas Turbine Engines
,”
AIAA
Paper No. AIAA-94-1440.
4.
Cláudio
,
R. A.
,
Branco
,
C. M.
,
Gomes
,
E. C.
,
Byrne
,
J.
,
Harrison
,
G. F.
, and
Winstone
,
M. R.
,
2004
, “
Fatigue Life Prediction and Failure Analysis of a Gas Turbine Disc Using the Finite-Element Method
,”
Fatigue Fract. Eng. Mater. Struct.
,
27
(
9
), pp.
849
860
.
5.
Wu
,
X.
,
2010
, “
Life Prediction of Gas Turbine Materials
,”
Gas Turbines
,
G.
Injeti
, ed.,
InTech
, Rijeka, Croatia, pp.
215
282
.
6.
Changan
,
C.
,
Liaw
,
P. K.
,
Ye
,
M.
, and
Yu
,
J.
,
1999
, “
Recent Developments in the Thermomechanical Fatigue Life Prediction of Superalloys
,”
J. Met.
,
51
(
4
), epub.http://www.tms.org/pubs/journals/JOM/9904/Cai/Cai-9904.html
7.
Lu
,
Z. Z.
,
Liu
,
C. L.
,
Yue
,
Z. F.
, and
Xu
,
Y. L.
,
2005
, “
Probabilistic Safe Analysis of the Working Life of a Powder Metallurgical Turbine Disc
,”
Mater. Sci. Eng. A
,
395
(
1–2
), pp.
153
159
.
8.
Hou
,
N.
,
Yu
,
Q.
,
Wen
,
Z.
, and
Yue
,
Z.
,
2010
, “
Low Cycle Fatigue Behavior of Single Crystal Superalloy With Temperature Gradient
,”
Eur. J. Mech.—A/Solids
,
29
(
4
), pp.
611
618
.
9.
Armstrong
,
I.
, and
Edmunds
,
T. M.
,
1989
, “
Fully Automatic Analysis in an Industrial Environment
,”
Second International Conference on Quality Assurance and Standards
, Stratford-upon-Avon, UK, May 22–25, pp.
74
84
.
10.
Amirante
,
D.
,
Hills
,
N. J.
, and
Barnes
,
C. J.
,
2012
, “
Thermo-Mechanical Finite Element Analysis/Computational Fluid Dynamics Coupling of an Interstage Seal Cavity Using Torsional Spring Analogy
,”
ASME J. Turbomach.
,
134
(
5
), p.
051015
.
11.
van Paridon
,
A.
,
Bacic
,
M.
,
Ireland
,
P. T.
,
Barnes
,
C.
, and
Lewis
,
L. V.
,
2014
, “
Reduced Order Transient Disc Temperature Models For Online Health Monitoring
,”
ASME
Paper No. GT2014-26296.
12.
Gay
,
D. H.
, and
Ray
,
W.
,
1995
, “
Identification and Control of Distributed Parameter Systems by Means of the Singular Value Decomposition
,”
Chem. Eng. Sci.
,
50
(
10
), pp.
1519
1539
.
13.
Widrich
,
M.
,
Sinha
,
A.
,
Suarez
,
E.
, and
Cassenti
,
B.
,
2006
, “
Applications of Neural Networks to the Real-Time Prediction of Metal Temperatures in Gas Turbine Engine Components
,”
ASME
Paper No. GT2006-90317.
14.
Tan
,
W. T. W.
,
Packard
,
A.
, and
Balas
,
G.
,
2000
, “
Quasi-LPV Modeling and LPV Control of a Generic Missile
,”
American Control Conference
(
ACC
), Chicago, IL, June 28–30, pp. 3692–3696.
15.
Marcos
,
A.
, and
Balas
,
G. J.
,
2004
, “
Development of Linear-Parameter-Varying Models for Aircraft
,”
J. Guid. Control Dyn.
,
27
(
2
), pp.
218
228
.
16.
Li
,
S. Q.
, and
Zhang
,
S. X.
,
2010
, “
A Modified LPV Modeling Technique for Turbofan Engine Control System
,”
International Conference on Computer Application and System Modeling
(
ICCASM
), Taiyuan, China, Oct. 22–24, pp. 99–102.
17.
Rotondo
,
D.
,
Nejjari
,
F.
, and
Puig
,
V.
,
2013
, “
Quasi-LPV Modeling, Identification and Control of a Twin Rotor MIMO System
,”
Control Eng. Pract.
,
21
(
6
), pp.
829
846
.
18.
Paijmans
,
B.
,
Symens
,
W.
,
Van Brussel
,
H.
, and
Swevers
,
J.
,
2008
, “
Identification of Interpolating Affine LPV Models for Mechatronic Systems With One Varying Parameter
,”
Eur. J. Control
,
14
(
1
), pp.
16
29
.
19.
Garg
,
S.
,
Schadow
,
K.
,
Horn
,
W.
,
Pfoertner
,
H.
, and
Stiharu
,
I.
,
2010
, “
Sensor and Actuator Needs for More Intelligent Gas Turbine Engines
,”
ASME
Paper No. GT2010-22685.
20.
Luppold
,
R. H.
,
Roman
,
J. R.
,
Gallops
,
G. W.
, and
Kerr
,
L. J.
,
1989
, “
Estimating In-Flight Engine Performance Variations Using Kalman Filter Concepts
,”
AIAA
Paper No. AIAA-89-2584.
21.
Simon
,
D. L.
, and
Garg
,
S.
,
2010
, “
Optimal Tuner Selection for Kalman Filter Based Aircraft Engine Performance Estimation
,”
ASME J. Eng. Gas Turbines Power
,
132
(
3
), p.
031601
.
22.
Simon
,
D. L.
, and
Armstrong
,
J. B.
,
2013
, “
An Integrated Approach For Aircraft Engine Performance Estimation and Fault Diagnoses
,”
ASME J. Eng. Gas Turbines Power
,
135
(
7
), p.
071203
.
23.
Volponi
,
A.
,
2008
, “
Enhanced Self Tuning On-Board Real-Time Model (eSTORM) for Aircraft Engine Performance Health Tracking
,” NASA Glenn Research Centre, Cleveland, OH, Technical Report No.
CR-2008-215272
.https://ntrs.nasa.gov/search.jsp?R=20080032604
24.
Franklin
,
G. F.
,
Powell
,
J. D.
, and
Workman
,
M.
,
1997
,
Digital Control of Dynamic Systems
,
3rd ed.
,
Addison-Wesley Longman
, Reading, MA.
25.
Sun
,
Z.
,
Chew
,
J. W.
,
Hills
,
N. J.
,
Volkov
,
K. N.
, and
Barnes
,
C. J.
,
2010
, “
Efficient Finite Element Analysis/Computational Fluid Dynamics Thermal Coupling for Engineering Applications
,”
ASME J. Turbomach.
,
132
(
3
), p.
031016
.
You do not currently have access to this content.