The use of highly reactive hydrogen-rich fuels in lean premixed combustion systems strongly affects the operability of stationary gas turbines (GT) resulting in higher autoignition and flashback risks. The present study investigates the autoignition behavior and ignition kernel evolution of hydrogen–nitrogen fuel mixtures in an inline co-flow injector configuration at relevant reheat combustor operating conditions. High-speed luminosity and particle image velocimetry (PIV) measurements in an optically accessible reheat combustor are employed. Autoignition and flame stabilization limits strongly depend on temperatures of vitiated air and carrier preheating. Higher hydrogen content significantly promotes the formation and development of different types of autoignition kernels: More autoignition kernels evolve with higher hydrogen content showing the promoting effect of equivalence ratio on local ignition events. Autoignition kernels develop downstream a certain distance from the injector, indicating the influence of ignition delay on kernel development. The development of autoignition kernels is linked to the shear layer development derived from global experimental conditions.

References

References
1.
Blouch
,
J. D.
, and
Law
,
C. K.
,
2003
, “
Effects of Turbulence on Nonpremixed Ignition of Hydrogen in Heated Counterflow
,”
Combust. Flame
,
132
(
3
), pp.
512
522
.
2.
Mastorakos
,
E.
,
2009
, “
Ignition of Turbulent Non-Premixed Flames
,”
Prog. Energy Combust. Sci.
,
35
(
1
), pp.
57
97
.
3.
Markides
,
C. N.
, and
Mastorakos
,
E.
,
2011
, “
Experimental Investigation of the Effects of Turbulence and Mixing on Autoignition Chemistry
,”
Flow Turbul. Combust.
,
86
(3–4), pp.
585
608
.
4.
Johannessen
,
B.
,
North
,
A.
,
Dibble
,
R.
, and
Lovas
,
T.
,
2016
, “
Experimental Studies of Autoignition Events in Unsteady Hydrogen-Air Flames
,”
Combust. Flame
,
162
(
9
), pp.
3210
3219
.
5.
Mastorakos
,
E.
,
Pires Da Cruz
,
A.
,
Baritaud
,
T. A.
, and
Poinsot
,
T. J.
,
1997
, “
A Model for the Effects of Mixing on the Autoignition of Turbulent Flows
,”
Combust. Sci. Technol.
,
125
(1–6), pp. 243–282.
6.
Markides
,
C. N.
, and
Mastorakos
,
E.
,
2005
, “
An Experimental Study of Hydrogen Autoignition in a Turbulent Co-Flow of Heated Air
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
883
891
.
7.
Joos
,
F.
,
Brunner
,
P.
,
Schulte-Werning
,
B.
,
Syed
,
K.
, and
Eroglu
,
A.
,
1996
, “
Development of the Sequential Combustion System for the ABB GT24/GT26 Gas Turbine Family
,”
ASME
Paper No. 1996-GT-315.
8.
Güthe
,
F.
,
Hellat
,
J.
, and
Flohr
,
P.
,
2009
, “
The Reheat Concept: The Proven Pathway to Ultralow Emissions and High Efficiency and Flexibility
,”
ASME J. Eng. Gas Turbines Power
,
131
(
2
), p.
021503
.
9.
Wind
,
T.
,
Güthe
,
F.
, and
Syed
,
K.
,
2014
, “
Co-Firing of Hydrogen and Natural Gases In Lean Premixed Conventional and Reheat Burners (Alstom GT 26)
,”
ASME
Paper No. GT2014-25813.
10.
Fleck
,
J.
,
Griebel
,
P.
,
Steinberg
,
A. M.
,
Stöhr
,
M.
,
Aigner
,
M.
, and
Ciani
,
A.
,
2012
, “
Autoignition Limits of Hydrogen at Relevant Reheat Combustor Operating Conditions
,”
ASME J. Eng. Gas Turbines Power
,
134
(
4
), p.
041502
.
11.
Fleck
,
J.
,
Griebel
,
P.
,
Steinberg
,
A. M.
,
Arndt
,
C. M.
,
Naumann
,
C.
, and
Aigner
,
M.
,
2013
, “
Autoignition of Hydrogen/Nitrogen Jets in Vitiated Air Crossflows at Different Pressures
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3185
3192
.
12.
Schmalhofer
,
C.
,
Prause
,
J.
,
Griebel
,
P.
,
Fleck
,
J.
,
Stöhr
,
M.
,
Severin
,
M.
,
Aigner
,
M.
, and
Wind
,
T.
,
2014
, “
Experimental and Numerical Investigation on Auto-Ignition of Hydrogen-Rich Fuels at Reheat Operating Conditions
,”
Seventh International Conference Future of Gas Turbine Technology
, Brussels, Belgium, Oct. 14–15, Paper No. 31.
13.
Schmalhofer
,
C.
,
Griebel
,
P.
,
Stöhr
,
M.
, and
Aigner
,
M.
,
2015
, “
Auto-Ignition of in-Line Injected Hydrogen/Nitrogen Fuel Mixtures at Reheat Combustor Operating Conditions
,”
ASME
Paper No. GT2015-43414.
14.
Dimotakis
,
P. E.
,
1986
, “
Two-Dimensional Shear-Layer Entrainment
,”
AIAA J.
,
24
(
11
), pp.
1791
1796
.
15.
Dimotakis
,
P. E.
,
1991
, “
Turbulent Free Shear Layer Mixing and Combustion
,”
High-Speed Flight Propulsion Systems
, American Institute of Aeronautics and Astronautics, Reston, VA.
16.
Dimotakis
,
P. E.
,
2005
, “
Turbulent Mixing
,”
Annu. Rev. Fluid Mech.
,
37
(
1
), pp.
329
356
.
17.
Fleck
,
J. M.
,
Griebel
,
P.
,
Steinberg
,
A. M.
,
Stöhr
,
M.
,
Aigner
,
M.
, and
Ciani
,
A.
,
2010
, “
Experimental Investigation of a Generic, Fuel Flexible Reheat Combustor at Gas Turbine Operating Conditions
,”
ASME
Paper No. GT2010-22722.
18.
Lückerath
,
R.
,
Meier
,
W.
, and
Aigner
,
M.
,
2008
, “
FLOX® Combustion at High Pressure With Different Fuel Compositions
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), p.
011505
.
19.
Poyyapakkam
,
M.
,
Wood
,
J.
,
Mayers
,
S.
,
Ciani
,
A.
,
Güthe
,
F.
, and
Syed
,
K.
,
2012
, “
Hydrogen Combustion Within a Gas Turbine Reheat Combustor
,”
ASME
Paper No. GT2012-69165.
20.
Lenze
,
M.
, and
Carroni
,
R.
,
2017
, “
Public Summary Report of ENCAP Deliverable D2.3.3 Report on Limits of Current Burners Using H2-Rich Fuel Mixtures
,” ENCAPCO2, accessed Sept. 23, 2017, http://www.encapco2.org/publications/SP2_2_3_3_SummaryReport.pdf
21.
Stopper
,
U.
,
Aigner
,
M.
,
Meier
,
W.
,
Sadanandan
,
R.
,
Stöhr
,
M.
, and
Kim
,
S. K.
,
2009
, “
Flow Field and Combustion Characterization of Premixed Gas Turbine Flames by Planar Laser Techniques
,”
ASME J. Eng. Gas Turbines Power
,
131
(
2
), p.
021504
.
22.
Brown
,
G. L.
, and
Roshko
,
A.
,
1974
, “
On Density Effects and Large Structure in Turbulent Mixing Layers
,”
J. Fluid Mech.
,
64
(
Pt. 4
), pp.
775
816
.
23.
Hermanson
,
J. C.
,
Mungal
,
M. G.
, and
Dimotakis
,
P. E.
,
1987
, “
Heat Release Effects on Shear-Layer Growth and Entrainment
,”
AIAA J.
,
25
(
4
), pp.
578
583
.
24.
Mungal
,
M. G.
,
Dimotakis
,
P. E.
, and
Broadwell
,
J. E.
,
1984
, “
Turbulent Mixing and Combustion in a Reacting Shear Layer
,”
AIAA J.
,
22
(
6
), pp.
797
800
.
You do not currently have access to this content.