Due to the rapid progress in high-performance computing and the availability of increasingly large computational resources, Navier–Stokes (NS) computational fluid dynamics (CFD) now offers a cost-effective, versatile, and accurate means to improve the understanding of the unsteady aerodynamics of Darrieus wind turbines and deliver more efficient designs. In particular, the possibility of determining a fully resolved flow field past the blades by means of CFD offers the opportunity to both further understand the physics underlying the turbine fluid dynamics and to use this knowledge to validate lower-order models, which can have a wider diffusion in the wind energy sector, particularly for industrial use, in the light of their lower computational burden. In this context, highly spatially and temporally refined time-dependent three-dimensional (3D) NS simulations were carried out using more than 16,000 processor cores per simulation on an IBM BG/Q cluster in order to investigate thoroughly the 3D unsteady aerodynamics of a single blade in Darrieus-like motion. Particular attention was paid to tip losses, dynamic stall, and blade/wake interaction. CFD results are compared with those obtained with an open-source code based on the lifting line free vortex wake model (LLFVW). At present, this approach is the most refined method among the “lower-fidelity” models, and as the wake is explicitly resolved in contrast to blade element momentum (BEM)-based methods, LLFVW analyses provide 3D flow solutions. Extended comparisons between the two approaches are presented and a critical analysis is carried out to identify the benefits and drawbacks of the two approaches.

References

1.
Paraschivoiu
,
I.
,
2002
,
Wind Turbine Design With Emphasis on Darrieus Concept
,
Polytechnic International Press
,
Montreal, QC, Canada
.
2.
Mohamed
,
M. H.
,
2014
, “
Aero-Acoustics Noise Evaluation of H-Rotor Darrieus Wind Turbines
,”
Energy
,
65
(
1
), pp.
596
604
.
3.
Balduzzi
,
F.
,
Bianchini
,
A.
,
Carnevale
,
E. A.
,
Ferrari
,
L.
, and
Magnani
,
S.
,
2012
, “
Feasibility Analysis of a Darrieus Vertical-Axis Wind Turbine Installation in the Rooftop of a Building
,”
Appl. Energy
,
97
, pp.
921
929
.
4.
Bianchini
,
A.
,
Ferrari
,
L.
, and
Magnani
,
S.
,
2012
, “
Energy-Yield-Based Optimization of an H-Darrieus Wind Turbine
,”
ASME
Paper No. GT2012-69892.
5.
Marten
,
D.
,
Bianchini
,
A.
,
Pechlivanoglou
,
G.
,
Balduzzi
,
F.
,
Nayeri
,
C. N.
,
Ferrara
,
G.
,
Paschereit
,
C. O.
, and
Ferrari
,
L.
,
2016
, “
Effects of Airfoil's Polar Data in the Stall Region on the Estimation of Darrieus Wind Turbines Performance
,”
ASME J. Eng. Gas Turbines Power
,
139
(
2
), p.
022606
.
6.
Marten
,
D.
,
Lennie
,
M.
,
Pechlivanoglou
,
G.
,
Nayeri
,
C. D.
, and
Paschereit
,
C. O.
,
2016
, “
Nonlinear Lifting Line Theory Applied to Vertical Axis Wind Turbines: Development of a Practical Design Tool
,” International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (
ISROMAC
), Honolulu, HI, Apr. 10–15, pp. 1–7.
7.
Dossena
,
V.
,
Persico
,
G.
,
Paradiso
,
B.
,
Battisti
,
L.
,
Dell'Anna
,
S.
,
Brighenti
,
A.
, and
Benini
,
E.
,
2015
, “
An Experimental Study of the Aerodynamics and Performance of a Vertical Axis Wind Turbine in Confined and Non-Confined Environment
,”
ASME
Paper No. GT2015-42827.
8.
Bachant
,
P.
, and
Wosnik
,
M.
,
2015
, “
Characterising the Near-Wake of a Cross-Flow Turbine
,”
J. Turbul.
,
16
(
4
), pp.
392
410
.
9.
Bianchini
,
A.
,
Balduzzi
,
F.
,
Bachant
,
P.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2017
, “
Effectiveness of Two-Dimensional CFD Simulations for Darrieus VAWTs: A Combined Numerical and Experimental Assessment
,”
Energy Convers. Manage.
,
136
, pp.
318
328
.
10.
Balduzzi
,
F.
,
Bianchini
,
A.
,
Maleci
,
R.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2016
, “
Critical Issues in the CFD Simulation of Darrieus Wind Turbines
,”
Renewable Energy
,
85
(
1
), pp.
419
435
.
11.
Balduzzi
,
F.
,
Bianchini
,
A.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2016
, “
Dimensionless Numbers for the Assessment of Mesh and Timestep Requirements in CFD Simulations of Darrieus Wind Turbines
,”
Energy
,
97
, pp.
246
261
.
12.
Balduzzi
,
F.
,
Bianchini
,
A.
,
Gigante
,
F. A.
,
Ferrara
,
G.
,
Campobasso
,
M. S.
, and
Ferrari
,
L.
,
2015
, “
Parametric and Comparative Assessment of Navier–Stokes CFD Methodologies for Darrieus Wind Turbine Performance Analysis
,”
ASME
Paper No. GT2015-42663.
13.
Lam
,
H. F.
, and
Peng
,
H. Y.
,
2016
, “
Study of Wake Characteristics of a Vertical Axis Wind Turbine by Two- and Three-Dimensional Computational Fluid Dynamics Simulations
,”
Renewable Energy
,
90
, pp.
386
398
.
14.
Raciti Castelli
,
M.
,
Pavesi
,
G.
,
Battisti
,
L.
,
Benini
,
E.
, and
Ardizzon
,
G.
,
2010
, “
Modeling Strategy and Numerical Validation for a Darrieus Vertical Axis Micro-Wind Turbine
,”
ASME
Paper No. IMECE2010-39548.
15.
Untaroiu
,
A.
,
Wood
,
H. G.
,
Allaire
,
P. E.
, and
Ribando
,
R. J.
,
2011
, “
Investigation of Self-Starting Capability of Vertical Axis Wind Turbines Using a Computational Fluid Dynamics Approach
,”
ASME J. Solar Energy Eng.
,
133
(
4
), p.
041010
.
16.
Alaimo
,
A.
,
Esposito
,
A.
,
Messineo
,
A.
,
Orlando
,
C.
, and
Tumino
,
D.
,
2015
, “
3D CFD Analysis of a Vertical Axis Wind Turbine
,”
Energies
,
8
(
4
), pp.
3013
3033
.
17.
De Marco
,
A.
,
Coiro
,
D. P.
,
Cucco
,
D.
, and
Nicolosi
,
F.
,
2014
, “
A Numerical Study on a Vertical-Axis Wind Turbine With Inclined Arms
,”
Int. J. Aerosp. Eng.
,
2014
, pp.
1
14
.
18.
Raciti Castelli
,
M.
, and
Benini
,
E.
,
2012
, “
Effect of Blade Inclination Angle on a Darrieus Wind Turbine
,”
ASME J. Turbomach.
,
134
(
3
), p.
031016
.
19.
Orlandi
,
A.
,
Collu
,
M.
,
Zanforlin
,
S.
, and
Shires
,
A.
,
2015
, “
3D URANS Analysis of a Vertical Axis Wind Turbine in Skewed Flows
,”
J. Wind Eng. Ind. Aerodyn.
,
147
, pp.
77
84
.
20.
Bianchini
,
A.
,
Balduzzi
,
F.
,
Ferrara
,
G.
,
Ferrari
,
L.
,
Persico
,
B.
,
Dossena
,
V.
, and
Battisti
,
L.
,
2017
, “
Detailed Analysis of the Wake Structure of a Straight-Blade H-Darrieus Wind Turbine by Means of Wind Tunnel Experiments and CFD Simulations
,”
ASME
Paper No. GT2017-64733.
21.
Bianchini
,
A.
,
Balduzzi
,
F.
,
Ferrara
,
G.
,
Ferrari
,
L.
,
Persico
,
B.
,
Dossena
,
V.
, and
Battisti
,
L.
,
2017
, “
A Combined Experimental and Numerical Analysis of the Wake Structure and Performance of a H-Shaped Darrieus Wind Turbine
,”
First GPPS Forum
, Zürich, Switzerland, Jan. 16–18, pp. 1–8.
22.
Menter
,
F. R.
,
1994
, “
Two-Equation Turbulence-Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
23.
Campobasso
,
M. S.
,
Piskopakis
,
A.
,
Drofelnik
,
J.
, and
Jackson
,
A.
,
2013
, “
Turbulent Navier–Stokes Analysis of an Oscillating Wing in a Power Extraction Regime Using the Shear Stress Transport Turbulence Model
,”
Comput. Fluids
,
88
, pp.
136
155
.
24.
Drofelnik
,
J.
, and
Campobasso
,
M. S.
,
2016
, “
Comparative Turbulent Three-Dimensional Navier–Stokes Hydrodynamic Analysis and Performance Assessment of Oscillating Wings for Renewable Energy Applications
,”
Int. J. Mar. Energy
,
16
, pp.
100
115
.
25.
Campobasso
,
M. S.
,
Gigante
,
F.
, and
Drofelnik
,
J.
,
2014
, “
Turbulent Unsteady Flow Analysis of Horizontal Axis Wind Turbine Airfoil Aerodynamics Based on the Harmonic Balance Reynolds-Averaged Navier–Stokes Equations
,”
ASME
Paper No. GT2014-25559.
26.
Campobasso
,
M. S.
, and
Baba-Ahmadi
,
M. H.
,
2012
, “
Analysis of Unsteady Flows Past Horizontal Axis Wind Turbine Airfoils Based on Harmonic Balance Compressible Navier–Stokes Equations With Low-Speed Preconditioning
,”
ASME J. Turbomach.
,
134
(
6
), p.
061020
.
27.
Bianchini
,
A.
,
Balduzzi
,
F.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2017
, “
Aerodynamics of Darrieus Wind Turbines Airfoils: The Impact of Pitching Moment
,”
ASME J. Eng. Gas Turbines Power
,
139
(
4
), p.
042602
.
28.
Gigante
,
F. A.
,
Balduzzi
,
F.
,
Bianchini
,
A.
,
Minghan
,
Y.
,
Ferrara
,
G.
,
Campobasso
,
M. S.
, and
Ferrari
,
L.
,
2017
, “
Low-Speed Preconditioning for Strongly Coupled Integration of Reynolds-Averaged Navier-Stokes Equations and Two-Equation Turbulence Models
,”
Comput. Fluids
(submitted).
29.
Rainbird
,
J.
,
Bianchini
,
A.
,
Balduzzi
,
F.
,
Peiro
,
J.
,
Graham
,
J. M. R.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2015
, “
On the Influence of Virtual Camber Effect on Airfoil Polars for Use in Simulations of Darrieus Wind Turbines
,”
Energy Convers. Manage.
,
106
, pp.
373
384
.
30.
Campobasso
,
M. S.
,
Drofelnik
,
J.
, and
Gigante
,
F.
,
2016
, “
Comparative Assessment of the Harmonic Balance Navier–Stokes Technology for Horizontal and Vertical Axis Wind Turbine Aerodynamics
,”
Comput. Fluids
,
136
, pp.
354
370
.
31.
The Hartree Centre
,
2017
, “
Hartree Centre
,” The Hartree Centre, Warrington, UK, accessed May 10, 2016, http://community.hartree.stfc.ac.uk/wiki/site/admin/resources.html
32.
Marten
,
D.
,
Pechlivanoglou
,
G.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2010
, “
Integration of a WT Blade Design Tool in XFOIL/XFLR5
,” German Wind Energy Conference (
DEWEK
), Bremen, Germany, Nov. 17–18, pp. 1–4.
33.
Marten
,
D.
,
Wendler
,
J.
,
Pechlivanoglou
,
G.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2013
, “
QBlade: An Open Source Tool for Design and Simulation of Horizontal and Vertical Axis Wind Turbines
,”
Int. J. Emerging Technol. Adv. Eng.
,
3
(
3
), pp.
264
269
.
34.
Van Garrel
,
A.
,
2003
,
Development of a Wind Turbine Aerodynamics Simulation Module
, Energy Research Centre of the Netherlands, Petten, The Netherlands, Report No. ECN-C-01-099.
35.
Marten
,
D.
,
2016
, “
QBlade Guidelines v0.95
,” Technical University of Berlin, Berlin, Germany.
36.
Marten
,
D.
,
Lennie
,
M.
,
Pechlivanoglou
,
G.
,
Nayeri
,
C. D.
, and
Paschereit
,
C. O.
,
2015
, “
Implementation, Optimization and Validation of a Nonlinear Lifting Line Free Vortex Wake Module Within the Wind Turbine Simulation Code QBlade
,”
ASME J. Eng. Gas Turbines Power
,
138
(
7
), p.
072601
.
37.
Marten
,
D.
,
Pechlivanoglou
,
G.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2016
, “
Nonlinear Lifting Line Theory Applied to Vertical Axis Wind Turbines: Development of a Practical Design Tool
,”
International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
(
ISROMAC
), Honolulu, HI, Apr. 10–15, pp. 1–7.
38.
Bergami
,
L.
, and
Gaunaa
,
M.
,
2012
, “
ATEFlap Aerodynamic Model: A Dynamic Stall Model Including the Effects of Trailing Edge Flap Deflection
,” Technical University of Denmark, Kongens Lyngby, Denmark, Report No.
Risø-R-1792(EN)
.
39.
Wendler
,
J.
,
Marten
,
D.
,
Pechlivanoglou
,
G.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2016
, “
An Unsteady Aerodynamics Model for Lifting Line Free Vortex Wake Simulations of HAWT and VAWT in QBlade
,”
ASME
Paper No. GT2016-57184.
40.
Bianchini
,
A.
,
Balduzzi
,
F.
,
Rainbird
,
J.
,
Peiro
,
J.
,
Graham
,
J. M. R.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2015
, “
An Experimental and Numerical Assessment of Airfoil Polars for Use in Darrieus Wind Turbines. Part I—Flow Curvature Effects
,”
ASME J. Eng. Gas Turbines Power
,
138
(
3
), p.
032602
.
41.
Drela
,
M.
, and
Giles
,
M.
,
1989
, “
Viscous-Inviscid Analysis of Transonic and Low Reynolds Number Airfoils
,”
AIAA J.
,
25
(
10
), pp.
1347
1355
.
42.
Montgomerie
,
B.
,
2004
, “
Methods for Root Effects, Tip Effects and Extending the Angle of Attack Range to ±100 deg, With Application to Aerodynamics for Blades on Wind Turbines and Propellers
,” FOI Swedish Defence Research Agency, Stockholm, Sweden, Report No. FOI-R-1035-SE.
You do not currently have access to this content.