The light-round is defined as the process by which the flame initiated by an ignition spark propagates from burner to burner in an annular combustor, eventually leading to a stable combustion. Combining experiments and numerical simulation, it was recently demonstrated that under perfectly premixed conditions, this process could be suitably described by large eddy simulation (LES) using massively parallel computations. The present investigation aims at developing light-round simulations in a configuration that is closer to that found in aero-engines by considering liquid n-heptane injection. The LES of the ignition sequence of a laboratory scale annular combustion chamber comprising sixteen swirled spray injectors is carried out with a monodisperse Eulerian approach for the description of the liquid phase. The objective is to assess this modeling approach of the two-phase reactive flow during the ignition process. The simulation results are compared in terms of flame structure and light-round duration to the corresponding experimental images of the flame front recorded by a high-speed intensified charge-coupled device camera and to the corresponding experimental delays. The dynamics of the flow is also analyzed to identify and characterize mechanisms controlling flame propagation during the light-round process.

References

References
1.
Lefebvre
,
A.
, and
Ballal
,
D. R.
,
2010
,
Gas Turbine Combustion
,
Taylor and Francis
, London.
2.
Boileau
,
M.
,
Staffelbach
,
G.
,
Cuenot
,
B.
,
Poinsot
,
T.
, and
Bérat
,
C.
,
2008
, “
Large Eddy Simulation of an Ignition Sequence in a Gas Turbine Engine
,”
Combust. Flame
,
154
(
1–2
), pp.
2
22
.
3.
Barré
,
D.
,
Esclapez
,
L.
,
Cordier
,
M.
,
Riber
,
E.
,
Cuenot
,
B.
,
Staffelbach
,
G.
,
Renou
,
B.
,
Vandel
,
A.
,
Gicquel
,
L. Y.
, and
Cabot
,
G.
,
2014
, “
Flame Propagation in Aeronautical Swirled Multi-Burners: Experimental and Numerical Investigation
,”
Combust. Flame
,
161
(
9
), pp.
2387
2405
.
4.
Bourgouin
,
J.-F.
,
Durox
,
D.
,
Schuller
,
T.
,
Beaunier
,
J.
, and
Candel
,
S.
,
2013
, “
Ignition Dynamics of an Annular Combustor Equipped With Multiple Swirling Injectors
,”
Combust. Flame
,
160
(
8
), pp.
1398
1413
.
5.
Philip
,
M.
,
Boileau
,
M.
,
Vicquelin
,
R.
,
Schmitt
,
T.
,
Durox
,
D.
,
Bourgouin
,
J.-F.
, and
Candel
,
S.
,
2014
, “
Simulation of the Ignition Process in an Annular Multiple-Injector Combustor and Comparison With Experiments
,”
ASME J. Eng. Gas Turbines Power
,
137
(
3
), p.
031501
.
6.
Philip
,
M.
,
Boileau
,
M.
,
Vicquelin
,
R.
,
Riber
,
E.
,
Schmitt
,
T.
,
Cuenot
,
B.
,
Durox
,
D.
, and
Candel
,
S.
,
2015
, “
Large Eddy Simulations of the Ignition Sequence of an Annular Multiple-Injector Combustor
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3159
3166
.
7.
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2013
, “
Self-Excited Circumferential Instabilities in a Model Annular Gas Turbine Combustor: Global Flame Dynamics
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3127
3134
.
8.
Worth
,
N. A.
, and
Dawson
,
J. R.
,
2013
, “
Modal Dynamics of Self-Excited Azimuthal Instabilities in an Annular Combustion Chamber
,”
Combust. Flame
,
160
(
11
), pp.
2476
2489
.
9.
Bach
,
E.
,
Kariuki
,
J.
,
Dawson
,
J. R.
,
Mastorakos
,
E.
, and
Joerg Bauer
,
H.
,
2013
, “
Spark Ignition of Single Bluff-Body Premixed Flames and Annular Combustors
,”
AIAA
Paper No. 2013-1182.
10.
Machover
,
E.
, and
Mastorakos
,
E.
,
2016
, “
Spark Ignition of Annular Non-Premixed Combustors
,”
Exp. Therm. Fluid Sci.
,
73
(
5
), pp.
64
70
.
11.
Prieur
,
K.
,
Durox
,
D.
,
Beaunier
,
J.
,
Schuller
,
T.
, and
Candel
,
S.
,
2017
, “
Ignition Dynamics in an Annular Combustor for Liquid Spray and Premixed Gaseous Injection
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3717
3724
.
12.
Fox
,
R. O.
,
2012
, “
Large-Eddy-Simulation Tools for Multiphase Flows
,”
Ann. Rev. Fluid Mech.
,
44
(
1
), pp.
47
76
.
13.
Sanjosé
,
M.
,
Senoner
,
J. M.
,
Jaegle
,
F.
,
Cuenot
,
B.
,
Moreau
,
S.
, and
Poinsot
,
T.
,
2011
, “
Fuel Injection Model for Euler–Euler and Euler–Lagrange Large-Eddy Simulations of an Evaporating Spray Inside an Aeronautical Combustor
,”
Int. J. Multiphase Flow
,
37
(
5
), pp.
514
529
.
14.
Senoner
,
J. M.
,
Sanjosé
,
M.
,
Lederlin
,
T.
,
Jaegle
,
F.
,
García
,
M.
,
Riber
,
E.
,
Cuenot
,
B.
,
Gicquel
,
L.
,
Pitsch
,
H.
, and
Poinsot
,
T.
,
2009
, “
Eulerian and Lagrangian Large-Eddy Simulations of an Evaporating Two-Phase Flow
,”
C. R. Méc.
,
337
(
6–7
), pp.
458
468
.
15.
Chrigui
,
M.
,
Gounder
,
J.
,
Sadiki
,
A.
,
Masri
,
A. R.
, and
Janicka
,
J.
,
2012
, “
Partially Premixed Reacting Acetone Spray Using LES and FGM Tabulated Chemistry
,”
Combust. Flame
,
159
(
8
), pp.
2718
2741
.
16.
Jones
,
W. P.
,
Lyra
,
S.
, and
Navarro-Martinez
,
S.
,
2012
, “
Numerical Investigation of Swirling Kerosene Spray Flames Using Large Eddy Simulation
,”
Combust. Flame
,
159
(
4
), pp.
1539
1561
.
17.
Luo
,
K.
,
Pitsch
,
H.
,
Pai
,
M. G.
, and
Desjardins
,
O.
,
2011
, “
Direct Numerical Simulations and Analysis of Three-Dimensional n-Heptane Spray Flames in a Model Swirl Combustor
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
2143
2152
.
18.
Garcia
,
M.
,
2009
, “
Development and Validation of the Euler-Lagrange Formulation on a Parallel and Unstructured Solver for Large-Eddy Simulation
,”
Ph.D. thesis
, National Polytechnic Institute of Toulouse, Toulouse, France.
19.
Schönfeld
,
T.
, and
Rudgyard
,
M.
,
1999
, “
Steady and Unsteady Flow Simulations Using the Hybrid Flow Solver AVBP
,”
AIAA J.
,
37
(
11
), pp.
1378
1385
.
20.
Colin
,
O.
, and
Rudgyard
,
M.
,
2000
, “
Development of High-Order Taylor–Galerkin Schemes for LES
,”
J. Comput. Phys.
,
162
(
2
), pp.
338
371
.
21.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow Turbul. Combust.
,
62
(
3
), pp.
183
200
.
22.
Boileau
,
M.
,
Pascaud
,
S.
,
Riber
,
E.
,
Cuenot
,
B.
,
Gicquel
,
L. Y. M.
,
Poinsot
,
T. J.
, and
Cazalens
,
M.
,
2008
, “
Investigation of Two-Fluid Methods for Large Eddy Simulation of Spray Combustion in Gas Turbines
,”
Flow Turbul. Combust.
,
80
(
3
), pp.
291
321
.
23.
Abramzon
,
B.
, and
Sirignano
,
W.
,
1989
, “
Droplet Vaporization Model for Spray Combustion Calculations
,”
Int. J. Heat Mass Transfer
,
32
(
9
), pp.
1605
1618
.
24.
Shum-Kivan
,
F.
,
Santiago
,
J. M.
,
Verdier
,
A.
,
Riber
,
E.
,
Renou
,
B.
,
Cabot
,
G.
, and
Cuenot
,
B.
,
2017
, “
Experimental and Numerical Analysis of a Turbulent Spray Flame Structure
,”
Proc. Combust. Inst.
,
36
(
2
), pp.
2567
2575
.
25.
Paulhiac
,
D.
,
2015
, “
Modélisation de la combustion d'un spray dans un bruleur aéronautique
,” Ph.D. thesis, National Polytechnic Institute of Toulouse, Toulouse, France.
26.
Franzelli
,
B.
,
Riber
,
E.
,
Sanjosé
,
M.
, and
Poinsot
,
T.
,
2010
, “
A Two-Step Chemical Scheme for Kerosene–Air Premixed Flames
,”
Combust. Flame
,
157
(
7
), pp.
1364
1373
.
27.
Butler
,
T.
, and
O'Rourke
,
P.
,
1977
, “
A Numerical Method for Two Dimensional Unsteady Reacting Flows
,”
Symp. (Int.) Combust.
,
16
(
1
), pp.
1503
1515
.
28.
Colin
,
O.
,
Ducros
,
F.
,
Veynante
,
D.
, and
Poinsot
,
T.
,
2000
, “
A Thickened Flame Model for Large Eddy Simulations of Turbulent Premixed Combustion
,”
Phys. Fluids
,
12
(
7
), pp.
1843
1863
.
29.
Legier
,
J. P.
,
Poinsot
,
T.
, and
Veynante
,
D.
,
2000
, “
Dynamically Thickened Flame LES Model for Premixed and Non-Premixed Turbulent Combustion
,”
Center for Turbulence Research Summer Program
, Stanford University, Stanford, CA, pp. 157–168.
30.
Charlette
,
F.
,
Meneveau
,
C.
, and
Veynante
,
D.
,
2002
, “
A Power-Law Flame Wrinkling Model for LES of Premixed Turbulent Combustion—Part I: Non-Dynamic Formulation and Initial Tests
,”
Combust. Flame
,
131
(
1–2
), pp.
159
180
.
31.
Poinsot
,
T.
, and
Lele
,
S.
,
1992
, “
Boundary Conditions for Direct Simulations of Compressible Viscous Flows
,”
J. Comput. Phys.
,
101
(
1
), pp.
104
129
.
32.
Lefebvre
,
A.
,
1989
,
Atomization and Sprays
,
Taylor and Francis
,
London
.
33.
Lancien
,
T.
,
Dumont
,
N.
,
Prieur
,
K.
,
Durox
,
D.
,
Candel
,
S.
,
Gicquel
,
O.
, and
Vicquelin
,
R.
,
2016
, “
Uncertainty Quantification of Injected Droplet Size in Mono-Dispersed Eulerian Simulations
,”
International Conference on Multiphase Flow
, Firenze, Italy, May 22–27, Paper No. 748.
34.
Reagana
,
M. T.
,
Najm
,
H. N.
,
Ghanem
,
R. G.
, and
Knio
,
O. M.
,
2003
, “
Uncertainty Quantification in Reacting-Flow Simulations Through Non-Intrusive Spectral Projection
,”
Combust. Flame
,
132
(
3
), pp.
545
555
.
35.
Xiu
,
D.
, and
Karniadakis
,
G. E.
,
2002
, “
The Wiener–Askey Polynomial Chaos for Stochastic Differential Equations
,”
SIAM J. Sci. Comput.
,
24
(
2
), pp.
619
644
.
36.
Khalil
,
M.
,
Lacaze
,
G.
,
Oefelein
,
J. C.
, and
Najm
,
H. N.
,
2015
, “
Uncertainty Quantification in LES of a Turbulent Bluff-Body Stabilized Flame
,”
Proc. Combust. Inst.
,
35
(
2
), pp.
1147
1156
.
37.
Ballal
,
D.
, and
Lefebvre
,
A.
,
1981
, “
Flame Propagation in Heterogeneous Mixtures of Fuel Droplets, Fuel Vapor and Air
,”
Symp. (Int.) Combust.
,
18
(
1
), pp.
321
328
.
38.
Neophytou
,
A.
, and
Mastorakos
,
E.
,
2009
, “
Simulations of Laminar Flame Propagation in Droplet Mists
,”
Combust. Flame
,
156
(
8
), pp.
1627
1640
.
39.
Yamashita
,
H.
,
Shimada
,
M.
, and
Takeno
,
T.
,
1996
, “
A Numerical Study on Flame Stability at the Transition Point of Jet Diffusion Flames
,”
Symp. (Int.) Combust.
,
26
(
1
), pp.
27
34
.
40.
Reveillon
,
J.
, and
Vervisch
,
L.
,
2005
, “
Analysis of Weakly Turbulent Dilute-Spray Flames and Spray Combustion Regimes
,”
J. Fluid Mech.
,
537
, pp.
317
347
.
You do not currently have access to this content.