This study presents additional important findings to the results of the research paper; “Optimization of the efficiency of stall control using air injection for centrifugal compressors” published in the Journal of Engineering for Gas Turbines and Power in 2015 (Halawa, T., Gadala, M. S., Alqaradawi, M., and Badr, O., 2015, “Optimization of the Efficiency of Stall Control Using Air Injection for Centrifugal Compressors,” ASME J. Eng. Gas Turbines Power, 137(7), p. 072604). The aim of this study is to make a fine determination of the injection angle, which provides the best stable condition when the compressor operates close to stall condition. A relatively narrower range of injection angles with smaller intervals was selected comparing to the results of the referred published paper, which clarified that the best injection angle is 30 deg. External air was injected close to the diffuser entrance at the shroud surface. Injection was applied with mass flow rate equals 1.5% of the design compressor inlet mass flow rate with injection angles ranged from 16 deg to 34 deg measured from the tangential direction at the vaneless region. It was found that both of injection angles of 28 deg and 30 deg achieved the best results in terms of compressor stabilization but each one of them has a specific advantage comparing to the other one. Using injection angle of 28 deg provided the lowest kinetic energy losses while the best orientation of the fluid through diffuser resulted when using an injection angle of 30 deg.

References

References
1.
Du
,
J.
,
Lin
,
F.
,
Zhang
,
H.
, and
Chen
,
J.
,
2010
, “
Numerical Investigation on the Self-Induced Unsteadiness in Tip Leakage Flow for a Transonic Fan Rotor
,”
ASME J. Turbomach.
,
132
(
2
), p.
021017
.
2.
Everitt
,
J. N.
, and
Spakovszky
,
Z. S.
,
2013
, “
An Investigation of Stall Inception in Centrifugal Compressor Vaned Diffuser
,”
ASME J. Turbomach.
,
135
(
1
), p.
011025
.
3.
Geng
,
S.
,
Zhang
,
X.
,
Li
,
J.
,
Zhao
,
L.
,
Zhang
,
H.
, and
Nie
,
C.
,
2013
, “
Evolution of Pressure Signature Dominated by Unsteady Tip Leakage Flow
,”
ASME
Paper No. GT2013-94523.
4.
Vo
,
H. D.
,
Tan
,
C. S.
, and
Greitzer
,
E. M.
,
2008
, “
Criteria for Spike Initiated Rotating Stall
,”
ASME J. Turbomach.
,
130
(
1
), p.
011023
.
5.
D'andrea
,
R.
,
Behnken
,
R.
, and
Murray
,
R.
,
1997
, “
Rotating Stall Control of an Axial Flow Compressor Using Pulsed Air Injection
,”
ASME J. Turbomach.
,
119
(
4
), pp.
742
752
.
6.
Suder
,
K. L.
,
Hathaway
,
M. D.
,
Thorp
,
S. A.
,
Strazisar
,
A. J.
, and
Bright
,
M. B.
,
2000
, “
Compressor Stability Enhancement Using Discrete Tip Injection
,”
ASME
Paper No. 2000-GT-0650.
7.
Nie
,
C.
,
Xu
,
G.
,
Cheng
,
X.
, and
Chen
,
J.
,
2002
, “
Micro Air Injection and Its Unsteady Response in a Low-Speed Axial Compressor
,”
ASME J. Turbomach.
,
124
(
4
), pp.
572
579
.
8.
Skoch
,
G. J.
,
2003
, “
Experimental Investigation of Centrifugal Compressor Stabilization Techniques
,”
ASME J. Turbomach.
,
125
(
4
), pp.
704
713
.
9.
Hiller
,
S.-J.
,
Matzgeller
,
R.
, and
Horn
,
W.
,
2011
, “
Stability Enhancement of a Multistage Compressor by Air Injection
,”
ASME J. Turbomach.
,
133
(
3
), p.
031009
.
10.
Benhegouga
,
I.
, and
Ce
,
Y.
,
2013
, “
Steady Air Injection Flow Control Parameters in a Transonic Axial Compressor
,”
Res. J. Appl. Sci.
,
5
(
4
), pp.
1441
1448
.
11.
Li
,
J.
,
Lin
,
F.
,
Tong
,
Z.
,
Nie
,
C.
, and
Chen
,
J.
,
2015
, “
The Dual Mechanisms and Implementations of Stability Enhancement With Discrete Tip Injection in Axial Flow Compressors
,”
ASME J. Turbomach.
,
137
(
3
), p.
031010
.
12.
Halawa
,
T.
,
Gadala
,
M. S.
,
Alqaradawi
,
M.
, and
Badr
,
O.
,
2015
, “
Optimization of the Efficiency of Stall Control Using Air Injection for Centrifugal Compressors
,”
ASME J. Eng. Gas Turbines Power
,
137
(
7
), p.
072604
.
13.
Chen
,
J.-P.
,
Webster
,
R. S.
,
Hathaway
,
M. D.
,
Herrick
,
G. P.
, and
Skoch
,
G. J.
,
2009
, “
High Performance Computing of Compressor Rotating Stall and Stall Control
,”
Integr. Comput.-Aided Eng.
,
16
(
1
), pp.
75
89
.
14.
Halawa
,
T.
, and
Gadala
,
M. S.
,
2017
, “
Numerical Investigation of Compressor Blades Deformation During Stall Development Into Surge
,”
J. Propul. Power
,
33
(5), pp. 1074–1086.
15.
Skoch
,
G.
,
Prahst
,
P.
,
Wernet
,
M.
,
Wood
,
J.
, and
Strazisar
,
A.
,
1997
, “
Laser Anemometer Measurements of the Flow Field in a 4:1 Pressure Ratio Centrifugal Impeller
,”
ASME
Paper No. 97-GT-342.
16.
Spakovszky
,
Z.
,
2002
, “
Backward Traveling Rotating Stall Waves in Centrifugal Compressors
,”
ASME
Paper No. GT2002-30379.
17.
Tarr
,
D. L.
,
2008
, “
Scaling of Impeller Response to Impeller-Diffuser Interactions in Centrifugal Compressors
,”
Doctoral dissertation
, Massachusetts Institute of Technology, Cambridge, MA.https://dspace.mit.edu/handle/1721.1/44924
18.
Wernet
,
M. P.
,
Bright
,
M. M.
, and
Skoch
,
G. J.
,
2001
, “
An Investigation of Surge in a High-Speed Centrifugal Compressor Using Digital PIV
,”
ASME J. Turbomach.
,
123
(
2
), pp.
418
428
.
19.
McKain
,
T. F.
, and
Holbrook
,
G. J.
,
1997
, “
Coordinates for a High Performance 4:1 Pressure Ratio Centrifugal Compressor
,” NASA Lewis Research Center, Cleveland, OH, Technical Report No.
NASA-CR-204134
.https://ntrs.nasa.gov/search.jsp?R=19970024917
You do not currently have access to this content.