Centrifugal compressors are one of the best choices among compressors in supercritical Brayton cycles. A supercritical CO2 centrifugal compressor increases the pressure of the fluid which state is initially very close to the critical point. When the supercritical fluid is compressed near the critical point, wide variations of fluid properties occur. The density of carbon dioxide at its critical point is close to the liquid density which leads to reduction in the compression work. This paper explains a method to overcome the simulation instabilities and challenges near the critical point in which the thermophysical properties change sharply. The investigated compressor is a centrifugal compressor tested in the Sandia supercritical CO2 test loop. In order to get results with the high accuracy and take into account the nonlinear variation of the properties near the critical point, the computational fluid dynamics (CFD) flow solver is coupled with a look-up table of properties of fluid. Behavior of real gas close to its critical point and the effect of the accuracy of the real gas model on the compressor performance are studied in this paper, and the results are compared with the experimental data from the Sandia compression facility.

References

References
1.
Dostal
,
V.
,
Driscoll
,
M.
, and
Hejzlar
,
P.
,
2004
, “
A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors
,” MIT Center for Advanced Nuclear Energy Systems, Cambridge, MA, Report No: MIT-ANP-TR-100.
2.
Angelino
,
G.
,
1968
, “
Carbon Dioxide Condensation Cycles for Power Production
,”
J. Eng. Power
,
90
(
3
), pp.
287
295
.
3.
Sorokin
,
A.
,
1979
, “
Dissociation Nitrogen Tetroxide (N2O4) as a Working Fluid in Thermodynamic Cycles
,”
Nucl. Sci. Eng.
,
72
(
3
), pp.
330
346
.
4.
Kimball
,
K. J.
, and
Clementoni
,
E. M.
,
2012
, “
Supercritical Carbon Dioxide Brayton Power Cycle Development Overview
,”
ASME
Paper No. GT2012-68204.
5.
Conboy
,
T.
,
Wright
,
S.
,
Pasch
,
J.
,
Fleming
,
D.
,
Rochau
,
G.
, and
Fuller
,
R.
,
2012
, “
Performance Characteristics of an Operating Supercritical CO2 Brayton Cycle
,”
ASME J. Eng. Gas Turbines Power
,
134
(
11
), p.
111703
.
6.
Colonna
,
P.
,
Harinck
,
J.
,
Rebay
,
S.
, and
Guardone
,
A.
,
2008
, “
Real-Gas Effects in Organic Rankine Cycle Turbine Nozzles
,”
J. Propul. Power
,
24
(
2
), pp.
282
294
.
7.
Harinck
,
J.
,
Colonna
,
P.
,
Guardone
,
A.
, and
Rebay
,
S.
,
2009
, “
Influence of Thermodynamic Models in Two-Dimensional Flow Simulations of Turboexpanders
,”
ASME J. Turbomach.
,
132
(
1
), p.
011001
.
8.
Takagi
,
K.
,
Muto
,
Y.
,
Ishizuka
,
T.
,
Kikura
,
H.
, and
Aritomi
,
M.
,
2010
, “
Research on Flow Characteristics of Supercritical CO2 Axial Compressor Blades by CFD Analysis
,”
J. Power Energy Syst.
,
4
(
1
), pp.
138
149
.
9.
Wright
,
S. A.
,
Radel
,
R. F.
,
Vernon
,
M. E.
,
Rochau
,
G. E.
, and
Pickard
,
P. S.
,
2010
, “
Operation and Analysis of a Supercritical CO2 Brayton Cycle
,” Sandia National Laboratories, Albuquerque, NM, Sandia Report No.
2010-0171
.https://prod.sandia.gov/techlib-noauth/access-control.cgi/2010/100171.pdf
10.
Brenes
,
B. M.
,
2014
, “
Design of Supercritical Carbon Dioxide Centrifugal Compressors
,”
Ph.D. thesis
, Universidad de Sevilla, Sevilla, Spain.https://idus.us.es/xmlui/bitstream/handle/11441/70902/Tesis_Monge%20Brenes%2C%20Benjamin.pdf?sequence=1&isAllowed=y
11.
Baltadjiev
,
N. D.
,
Lettieri
,
C.
, and
Spakovszky
,
Z. S.
,
2015
, “
An Investigation of Real Gas Effects in Supercritical CO2 Centrifugal Compressor
,”
ASME J. Turbomach.
,
137
(
9
), p.
091003
.
12.
Rinaldi
,
E.
,
Pecnik
,
R.
, and
Colonna
,
P.
,
2015
, “
Computational Fluid Dynamic Simulation of a Supercritical CO2 Compressor Performance Map
,”
ASME J. Eng. Gas Turbines Power
,
137
(
7
), p.
072602
.
13.
ANSYS BladeGen
,
2014
, “
Release 16, User Guide
,” ANSYS Inc., Canonsburg, PA.
14.
ANSYS Academic Research
,
2014
, “
Release 16, Theory Manual
,” ANSYS Inc., Canonsburg, PA.
15.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
16.
Wright
,
S. A.
,
Conboy
,
T. M.
,
Parma
,
E. J.
,
Lewis
,
T. G.
, and
Rochau
,
G. A.
,
2011
, “
Summary of the Sandia Supercritical CO2 Development Program
,”
SCO2 Power Cycle Symposium
, Boulder, CO, May 24–25.https://www.osti.gov/servlets/purl/1108068
17.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2010
, “
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.0
,” REFPROP, National Institute of Standards and Technology, Gaithersburg, MD.
18.
Van der Waals
,
J.
,
1873
, “
Over de Continuiteit van den Gas- en Vloeistoftoestand
,” Ph.D. thesis, A. W. Sijthoff, Leiden, The Netherlands.
19.
Span
,
R.
, and
Wagner
,
W.
,
1996
, “
A New Equation of State for Carbon Dioxide Covering the Fluid Region From the Triple-Point Temperature to 1100 K at Pressures Up to 800 MPa
,”
J. Phys. Chem.
,
25
(
6
), pp.
1509
1596
.
20.
Baltadjiev
,
N. D.
,
2012
, “
An Investigation of Real Gas Effects in Supercritical CO2 Compressors
,” Master's thesis, Massachusetts Institute of Technology, Cambridge, MA.
21.
Pecnik
,
R.
,
Rinaldi
,
E.
, and
Colonna
,
P.
,
2012
, “
Computational Fluid Dynamics of a Radial Compressor Operating With Supercritical CO2
,”
ASME J. Eng. Gas Turbines Power
,
134
(
12
), p.
122301
.
You do not currently have access to this content.