Air foil bearings (AFBs) are introduced as promising bearings for oil-free turbomachinery applications. AFBs provide reliable operation at high speed and high temperature with negligible power loss. Hybrid air foil bearing (HAFB) technology utilizes the radial injection of externally pressurized air into the traditional hydrodynamic AFB's film thickness through orifices attached to the top foil. Previous studies have reported enhancement in the rotordynamic stability of HAFBs compared to traditional hydrodynamic AFBs. HAFBs have several orifices distributed in the circumferential direction. In this study, the effect of the circumferential location of radial injection on the rotordynamic performance of the rotor-HAFB is studied. Analytical and experimental evaluations of the rotordynamic performance of a rotor supported by two single-pad HAFBs are presented. Parametric studies are conducted using three sets of single-pad HAFBs. The circumferential locations of orifices are different for each set. The presented simulation analyses consist of time-domain orbit simulation and frequency-domain modal analysis. Imbalance responses of rotor-HAFB were measured with various orifice locations and the results agree well with predictions. Comparison of the rotordynamic performance of HAFBs with different orifice configurations demonstrates substantial improvement in rotordynamic stability as well as enhancement in the stiffness and damping coefficients of HAFBs by choosing the best circumferential location for radial injection to control rotor eccentricity and attitude angle.

References

References
1.
Heshmat
,
H.
, and
Hermelb
,
P.
,
1993
, “
Compliant Foil Bearings Technology and Their Application to High Speed Turbomachinery
,”
19th Leeds-Lyon Symposium on Tribology Thin Films in Tribology,
Leeds, UK, Sept. 8–11, pp.
559
575
.
2.
Capstone Turbine Corporation
,
2017
,
The Capstone Microturbine
,
Capstone Turbine Corporation
,
Chatsworth, CA
.
3.
Bladon Jets
,
2017
,
Bladon Jets Micro Gas Turbine Gensets
,
Bladon Jets
,
Coventry, UK
.
4.
Yazdi
,
B. Z.
,
Kim
,
D.
, and
Xu
,
F.
,
2016
, “
Enhancement of the Rotordynamic Performance of a Shaft Supported by Air Foil Bearings With Vibration Damper
,”
ASME
Paper No. GT2016-56790
.
5.
Xu
,
F.
,
Kim
,
D.
, and
Yazdi
,
B. Z.
,
2016
, “
Theoretical Study of Top Foil Sagging Effect on the Performance of Air Thrust Foil Bearing
,”
ASME
Paper No. GT2016-56493
.
6.
San Andrés
,
L.
,
Rubio
,
D.
, and
Kim
,
T. H.
,
2007
, “
Rotordynamic Performance of a Rotor Supported on Bump Type Foil Gas Bearings: Experiments and Predictions
,”
ASME J. Eng. Gas Turbines Power
,
129
(
3
), pp.
850
857
.
7.
Ertas
,
B. H.
,
2008
, “
Compliant Hybrid Journal Bearings Using Integral Wire Mesh Dampers
,”
ASME J. Eng. Gas Turbines Power
,
131
(
2
), p.
022503
.
8.
San Andrés
,
L.
, and
Chirathadam
,
T. A.
,
2012
, “
A Metal Mesh Foil Bearing and a Bump-Type Foil Bearing: Comparison of Performance for Two Similar Size Gas Bearings
,”
ASME J. Eng. Gas Turbines Power
,
134
(
10
), p.
102501
.
9.
Feng
,
K.
,
Liu
,
Y.
, and
Zhao
,
X.
,
2016
, “
Experimental Evaluation of the Structure Characterization of a Novel Hybrid Bump-Metal Mesh Foil Bearing
,”
ASME J. Tribol.
,
138
(
2
), p.
021702
.
10.
Hoffmann
,
R.
, and
Liebich
,
R.
,
2017
, “
Experimental and Numerical Analysis of the Dynamic Behaviour of a Foil Bearing Structure Affected by Metal Shims
,”
Tribol. Int.
,
115
, pp.
378
388
.
11.
Feng
,
K.
,
Hu
,
J.
, and
Liu
,
W.
,
2016
, “
Structural Characterization of a Novel Gas Foil Bearing With Nested Compression Springs: Analytical Modeling and Experimental Measurement
,”
ASME J. Eng. Gas Turbines Power
,
138
(
1
), p.
012504
.
12.
Song
,
J.
, and
Kim
,
D.
,
2007
, “
Foil Gas Bearing With Compression Springs: Analyses and Experiments
,”
ASME J. Tribol.
,
129
(
3
), pp.
628
639
.
13.
DellaCorte
,
C.
, and
Valco
,
M. J.
,
2000
, “
Load Capacity Estimation of Foil Air Journal Bearing for Oil-Free Turbomachinery Application
,”
STLE Tribol. Trans.
,
43
(
4
), pp.
795
801
.
14.
Kim
,
D.
,
2007
, “
Parametric Studies on Static and Dynamic Performance of Air Foil Bearings With Different Top Foil Geometries and Bump Stiffness Distributions
,”
ASME J. Tribol.
,
192
(
2
), pp.
354
364
.
15.
Balducchi
,
F.
,
Arghir
,
M.
, and
Gauthier
,
R.
,
2015
, “
Experimental Analysis of the Unbalance Response of Rigid Rotors Supported on Aerodynamic Foil Bearings
,”
ASME J. Vib. Acoust.
,
137
(
6
), p.
061014
.
16.
Bonello
,
P.
, and
Hassan
,
M. B.
,
2018
, “
An Experimental and Theoretical Analysis of a Foil-Air Bearing Rotor System
,”
J. Sound Vib.
,
413
, pp.
395
420
.
17.
Heshmat
,
H.
, and
Ku
,
C.
,
1994
, “
Structural Damping of Self-Acting Compliant Foil Journal Bearing
,”
ASME J. Tribol.
,
116
(1), pp.
76
82
.
18.
Rubio
,
D.
, and
San Andres
,
L.
,
2007
, “
Structural Stiffness, Dry Friction Coefficient, and Equivalent Viscous Damping in a Bump-Type Foil Gas Bearing
,”
ASME J. Eng. Gas Turbines Power
,
129
(
2
), pp.
494
502
.
19.
Ku
,
C. P.
, and
Heshmat
,
H.
,
1994
, “
Structural Stiffness and Coulomb Damping in Compliant Foil Journal Bearing: Parametric Studies
,”
STLE J. Tribol. Trans.
,
37
(
3
), pp.
455
462
.
20.
Le Lez
,
S.
,
Arghir
,
M.
, and
Frene
,
J.
,
2008
, “
A Dynamic Model for Dissipative Structures Used in Bump-Type Foil Bearings
,”
STLE J. Tribol. Trans.
,
52
(
1
), pp.
36
46
.
21.
Feng
,
K.
, and
Kaneko
,
S.
,
2010
, “
Analytical Model of Bump-Type Foil Bearings Using a Link-Spring Structure and a Finite-Element Shell Model
,”
ASME J. Tribol.
,
132
(
2
), p.
021706
22.
Larsen
,
J. S.
,
Varela
,
A. C.
, and
Santos
,
I. F.
,
2014
, “
Numerical and Experimental Investigation of Bump Foil Mechanical Behaviour
,”
Tribol. Int.
,
74
, pp.
46
56
.
23.
von Osmanski
,
S.
,
Larsen
,
J. S.
, and
Santos
,
I. F.
,
2017
, “
A Fully Coupled Air Foil Bearing Model Considering Friction–Theory & Experiment
,”
J. Sound Vib.
,
400
, pp.
660
679
.
24.
DellaCorte
,
C.
, and
Edmonds
,
B. J.
,
1995
, “
Preliminary Evaluation of PS300: A New Self-Lubricating High Temperature Composite Coating for Use to 800 C
,” NASA Lewis Research Center, Cleveland, OH, Report No. NASA-TM-107056.
25.
Radil
,
K.
, and
Batcho
,
Z.
,
2011
, “
Air Injection as a Thermal Management Technique for Radial Foil Air Bearings
,”
STLE J. Tribol. Trans.
,
54
(
4
), pp.
666
673
.
26.
Kim
,
D.
, and
Park
,
S.
,
2009
, “
Hydrostatic Air Foil Bearings: Analytical and Experimental Investigation
,”
Tribol. Int.
,
42
(
3
), pp.
413
425
.
27.
Kim
,
D.
, and
Zimbru
,
G.
,
2011
, “
Start-Stop Characteristics and Thermal Behavior of a Large Hybrid Airfoil Bearing for Aero-Propulsion Applications
,”
ASME J. Eng. Gas Turbines Power
,
134
(
3
), p. 032502.
28.
Kumar
,
K.
, and
Kim
,
D.
,
2008
, “
Parametric Studies on Dynamic Performance of Hybrid Airfoil Bearing
,”
ASME J. Eng. Gas Turbines Power
,
130
(
6
), p.
032502
.
29.
Wang
,
Y. P.
, and
Kim
,
D.
,
2014
, “
Experimental Identification of Force Coefficients of Large Hybrid Air Foil Bearings
,”
ASME J. Eng. Gas Turbines Power
,
136
(
3
), p.
032503
.
30.
Yazdi
,
B. Z.
, and
Kim
,
D.
,
2018
, “
Rotordynamic Performance of Hybrid Air Foil Bearings With Regulated Hydrostatic Injection
,”
ASME J. Eng. Gas Turbines Power
,
140
(
1
), p.
012506
.
31.
DellaCorte
,
C.
,
1997
, “
A New Foil Air Bearing Test Rig for Use to 700 °C and 70,000 RPM
,” NASA Lewis Research Center, Cleveland, OH, Report No. NASA-TM-107405.
32.
Heshmat
,
H.
,
Shapiro
,
W.
, and
Gray
,
S.
,
1982
, “
Development of Foil Journal Bearings for High Load Capacity and High-Speed Whirl Stability
,”
ASME J. Lubr. Technol.
,
104
(
2
), pp.
149
156
.
33.
Rudloff
,
L.
,
Arghir
,
M.
, and
Bonneau
,
O.
,
2011
, “
Experimental Analyses of a First Generation Foil Bearing: Startup Torque and Dynamic Coefficients
,”
ASME J. Eng. Gas Turbines Power
,
133
(
9
), p.
092501
.
34.
Mahner
,
M.
,
Li
,
P.
, and
Lehn
,
A.
,
2018
, “
Numerical and Experimental Investigations on Preload Effects in Air Foil Journal Bearings
,”
ASME J. Eng. Gas Turbines Power
,
140
(
3
), p.
032505
.
35.
Kim
,
D.
, and
Lee
,
D.
,
2010
, “
Design of Three-Pad Hybrid Air Foil Bearing and Experimental Investigation on Static Performance at Zero Running Speed
,”
ASME J. Eng. Gas Turbines Power
,
132
(
12
), pp.
122504
122514
.
36.
Lee
,
D.
, and
Kim
,
D.
,
2010
, “
Five Degrees of Freedom Nonlinear Rotor Dynamics Model of a Rigid Rotor Supported by Multiple Airfoil Bearings
,”
Eighth IFToMM International Conference on Rotordynamics, KIST, Seoul, Korea
, Sept. 12–15, pp. 12–15.
37.
Kim
,
D.
,
Lee
,
A. S.
, and
Choi
,
B. S.
,
2014
, “
Evaluation of Foil Bearing Performance and Nonlinear Rotordynamics of 120 kW Oil-Free Gas Turbine Generator
,”
ASME J. Eng. Gas Turbines Power
,
136
(
3
), p.
032504
.
38.
LaTray
,
N.
, and
Kim
,
D.
,
2017
, “
Rotordynamic Performance of a Shaft With Large Overhung Mass Supported by Foil Bearings
,”
ASME J. Eng. Gas Turbines Power
,
139
(
4
), p.
042506
.
39.
Kim
,
D.
,
Nicholson
,
B.
, and
Rosado
,
L.
,
2018
, “
Rotordynamics Performance of Hybrid Foil Bearing Under Forced Vibration Input
,”
ASME J. Eng. Gas Turbines Power
,
140
(
1
), p.
012507
.
40.
Liu
,
W.
,
Kim
,
D.
, and
Feng
,
K.
,
2018
, “
Effect of Axial Force on Rotordynamics of a Rigid Rotor Supported by Foil Bearings
,”
ASME
Paper No. GT2018-76261.
41.
Bonello
,
P.
, and
Pham
,
H.
,
2014
, “
The Efficient Computation of the Nonlinear Dynamic Response of a Foil–Air Bearing Rotor System
,”
J. Sound Vib.
,
333
(
15
), pp.
3459
3478
.
42.
Bonello
,
P.
, and
Pham
,
H.
,
2014
, “
Nonlinear Dynamic Analysis of High Speed Oil-Free Turbomachinery With Focus on Stability and Self-Excited Vibration
,”
ASME J. Tribol.
,
136
(
4
), p.
041705
.
43.
Larsen
,
J. S.
, and
Santos
,
I. F.
,
2015
, “
On the Nonlinear Steady-State Response of Rigid Rotors Supported by Air Foil Bearings—Theory and Experiments
,”
J. Sound Vib.
,
346
, pp.
284
297
.
44.
Belforte
,
G.
,
Raparelli
,
T.
, and
Viktorov
,
V.
,
2006
, “
An Experimental Study on a High-Speed Rotor Supported by Air Bearings Mounted on O-Rings
,”
ASME
Paper No. ESDA2006-95809
.
You do not currently have access to this content.