This paper presents the methodology and results of the optimization of a straight-through labyrinth seal with two inclined fins against smooth-land. The optimization was performed using commercial tools implemented in the ANSYS environment, such as goal-driven optimization. The response surfaces were created based on Latin hypercube samples found from computational fluid dynamics (CFD) calculations. The CFD solver, using a steady-state scheme with the k–ω shear stress transport (SST) turbulence model, was applied. A screening algorithm was used to find the best candidates on the response surfaces. The objective function adopted in the labyrinth seal optimization was the minimization of the discharge coefficient value. A wide range of parameters of the fins position and shape were taken into account, with physically justified degrees-of-freedom. The optimization results were supported by the results of an in-house experiment performed on a stationary, linear test rig. The test rig was fed by a high-capacity vacuum air blower with high-precision hot-wire anemometry mass flow evaluation. The reductions in the leakage significantly exceed the uncertainties of the CFD model and the test rig accuracy. The factors that had the most substantial impact on the leakage reduction were the location, inclination, and thickness of the fins. The experimental results were compared with the calculations and the optimization effects, highlighting some tendencies in the labyrinth seal flow behavior. Good agreement was obtained between the optimization results and the experimental data, proving that the presented methodology is sufficient for the labyrinth seal optimization.

References

References
1.
Choi
,
D. C.
, and
Rhode
,
D.
,
2004
, “
Development of a Two Dimensional Computational Fluid Dynamics Approach for Computing Three-Dimensional Honeycomb Labyrinth Leakage
,”
ASME J. Eng. Gas Turbines Power
,
126
(
4
), pp.
794
802
.
2.
Paolillo
,
R.
,
Wang
,
C. Z.
,
Vashist
,
T. K.
,
Cloud
,
D.
,
Bingen
,
F. M. G.
, and
Kool
,
G. A.
,
2006
, “
Rotating Seal Rig Experiments: Test Results and Analysis Modeling
,”
ASME
Paper No. GT2006-90957.
3.
Kang
,
Y.
,
Kim
,
T. S.
,
Kang
,
S. Y.
, and
Moon
,
H. K.
,
2010
, “
Aerodynamic Performance of Stepped Labyrinth Seals for Gas Turbine Applications
,”
ASME
Paper No. GT 2010-23256.
4.
Micio
,
M.
,
Facchini
,
B.
,
Innocenti
,
L.
, and
Simonetti
,
F.
,
2011
, “
Experimental Investigation on Leakage Loss and Heat Transfer in a Straight Through Labyrinth Seal
,”
ASME
Paper No. GT2011-46402.
5.
Szymański
,
A.
,
Dykas
,
S.
,
Wróblewski
,
W.
,
Frączek
,
D.
, and
Marugi
,
K.
,
2017
, “
Experimental and Numerical Validation Study of the Labyrinth Seal Configurations
,”
12th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics
, Stockholm, Sweden, Apr. 3–7, Paper No.
ETC2017-340
.https://www.researchgate.net/publication/317170032_Experimental_and_Numerical_Validation_Study_of_the_Labyrinth_Seal_Configurations
6.
Collins
,
D.
,
Teixeira
,
J. A.
,
Crudgington
,
P.
, and
Ivey
,
P. C.
,
2006
, “
Numerical Modelling of Three Dimensional Honeycomb Labyrinth Seals Employing a Simplified Approach
,”
ASME
Paper No. GT2006-90850.
7.
Alizadeh, M.
,
Nikkhahi, B.
,
Farahani, A. S.
, and
Fathi, A.
, 2017, “
Numerical Study on the Effect of Geometrical Parameters on the Labyrinth-Honeycomb Seal Performance
,”
Proc. Inst. Mech. Eng., Part G
,
232
(2), p. 362–373.
8.
Szymański
,
A.
,
Dykas
,
S.
,
Majkut
,
M.
, and
Strozik
,
M.
,
2016
, “
The Assessment of the Calculation Method for Determining Characteristics of One Straight Fin Labyrinth Seal
,”
Trans. Inst. Fluid-Flow Mach.
,
134
, pp.
89
107
.http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-a01d9c58-8d9f-41f9-ad64-75cb88dab4ea
9.
Esser
,
D.
, and
Kazakia
,
J. Y.
,
1995
, “
Air Flow in Cavities of Labyrinth Seals
,”
Int. J. Eng. Sci.
,
15
(
15
), pp.
2309
2326
.
10.
Eldin
,
A.
,
2007
, “
Leakage and Rotordynamic Effects of Pocket Damper Seals and See-Through Labyrinth Seals
,”
Ph.D. thesis
, Texas A&M University, College Station, TX.http://oaktrust.library.tamu.edu/handle/1969.1/ETD-TAMU-2084
11.
Schramm
,
V.
,
Denecke
,
J.
,
Kim
,
S.
, and
Wittig
,
S.
,
2004
, “
Shape Optimization of a Labyrinth Seal Applying the Simulated Annealing Method
,”
Int. J. Rotating Mach.
,
10
(
5
), pp.
365
371
.
12.
Braun
,
E.
,
Dullenkopf
,
K.
, and
Bauer
,
H. J.
,
2012
, “
Optimization of Labyrinth Seal Performance Combining Experimental, Numerical and Data Mining Methods
,”
ASME
Paper No. GT2012-68077.
13.
Wróblewski
,
W.
,
Dykas
,
S.
,
Bochon
,
K.
, and
Rulik
,
S.
,
2010
, “
Optimization of Tip Seal With Honeycomb Land in LP Counter Rotating Gas Turbine Engine
,”
TASK Q.: Sci. Bull. Acad. Comput. Centre Gdansk
,
14
(
3
), pp.
189
207
.http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-article-BPG8-0042-0044
14.
Wittig
,
S.
,
Schelling
,
U.
,
Kim
,
S.
, and
Jacobsen
,
K.
,
1987
, “
Numerical Predictions and Measurements of Discharge. Coefficients in Labyrinth Seals
,”
ASME
Paper No. 87-GT-188.
15.
Tyacke
,
J.
,
Jefferson-Loveday
,
R.
, and
Tucker
,
P. G.
,
2013
, “
On the Application of LES to Seal Geometries
,”
Flow, Turbul. Combust.
,
91
(
4
), pp.
827
848
.
16.
Zimmermann
,
H.
, and
Wolff
,
K.
, “
Air System Correlations Part 1: Labyrinth Seals
,”
ASME
Paper No. 98-GT-206.
17.
Vakili
,
A. D.
,
Meganathan
,
A. J.
,
Michaud
,
M.
, and
Radhakrishnan
,
S.
,
2005
, “
An Experimental and Numerical Study of Labyrinth Seal Flow
,”
ASME
Paper No. GT2005-68224.
18.
Stocker
,
H.
,
1978
, “
Determining and Improving Labyrinth Seal Performance in Current and Advanced High Performance Gas Turbines
,” Detroit Diesel Allison, Indianapolis, IN, Technical Report No. AGARDCP-273.
19.
Paolio
,
R.
,
Moore
,
S.
,
Cloud
,
D.
, and
Glahn
,
J. A.
,
2007
, “
Impact of Rotational Speed on the Discharge Characteristic of Stepped Labyrinth Seals
,”
ASME
Paper No. GT2007-28248.
20.
Matthias
,
A.
, and
Willinger
,
R.
,
2009
, “
Influence of Rotation and Eccentricity on Labyrinth Seal Leakage
,”
Eighth European Turbomachinery Conference
, Graz, Austria, Mar. 23–27, Paper No. ETC2009-084.
21.
Szymański
,
A.
,
Dykas
,
S.
, and
Wróblewski
,
W.
,
2015
, “
Flow Analysis of the Turbine Rotor Tip Seal on a Highly Rotary Test Rig
,”
11th European Turbomachinery Conference
, Madrid, Spain, Mar. 23–27, Paper No. ETC2015-062.
22.
Szymański
,
A.
,
Dykas
,
S.
,
Wróblewski
,
W.
,
Majkut
,
M.
, and
Strozik
,
M.
,
2016
, “
Experimental and Numerical Study on the Performance of the Smooth-Land Labyrinth Seal
,”
J. Phys.: Conf. Ser.
,
760
, p.
012033
.
23.
Waschka
,
W.
,
1991
, “
Zum Einfluss Der Rotation Auf Das Durchflussverhalten Und Wärmeübertragungsverhalten in Labyrinthdichtungen Und Wellen-Durchführungen
,” Ph.D. thesis, ITSM, Karlsruhe University, Karlsruhe, Germany.
24.
Szymański
,
A.
,
Dykas
,
S.
,
Wróblewski
,
W.
, and
Rulik
,
S.
,
2014
, “
Numerical Analysis of a Tip Labyrinth Seal of High Rotating Rotor
,”
Zeszyty Naukowe. Cieplne Maszyny Przepływowe Turbomach.
,
146
, pp.
153
163
.http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-667edce7-d1aa-42e9-b312-bb1e35fd15c1
25.
McKay
,
M.
,
Beckman
,
R.
, and
Conover
,
W.
,
1979
, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
21
(
2
), pp.
239
245
.
26.
ANSYS, Inc.
, 2015,
Release 15.0, Help System, CFX Theory Guide
,
ANSYS® Academic Research
, Canonsburg, PA.
You do not currently have access to this content.