Large eddy simulation (LES) with three-dimensional conditional moment closure (CMC) subgrid model for combustion is applied to simulate a swirl-stabilized nonpremixed methane flame with localized extinction, with special focus on the effects of heat loss to the burner surface. The convective wall heat loss is modeled through introducing a source term in the conditionally filtered total enthalpy equation for the CMC cells adjacent to the wall. The mean heat flux is high on the middle surface of the bluff body, but relatively low near its edges. The turbulent heat flux based on the gradient of the resolved temperature is relatively low compared to the laminar counterpart, but increases with the turbulent intensity. The heat loss facilitates the occurrences of extinction and re-ignition for the CMC cells immediately adjacent to the wall, evidenced by comparing flame structures in the near-wall CMC cells. This can be directly linked to the increase of the mean conditional scalar dissipation near the wall in the heat loss case. Furthermore, the degree of local extinction near the bluff body measured by conditional reactedness at stoichiometry is intensified due to the wall heat loss. However, the results also show that there is negligible influence of wall heat loss on the probability density function (PDF) of the lift-off height, demonstrating the dominance of aerodynamic effects on flame stabilization. The results are in reasonable agreement with experimental measurements.

References

References
1.
Poinsot
,
T.
, and
Veynante
,
D.
,
2005
,
Theoretical and Numerical Combustion
,
R.T. Edwards
,
Philadelphia, PA
.
2.
Ju
,
Y.
, and
Maruta
,
K.
,
2012
, “
Microscale Combustion: Technology Development and Fundamental Research
,”
Prog. Energy Combust. Sci.
,
37
(
6
), pp.
669
715
.
3.
Kaisare
,
N. S.
, and
Vlachos
,
D. G.
,
2012
, “
A Review on Microcombustion: Fundamentals, Devices and Applications
,”
Prog. Energy Combust. Sci.
,
38
(
3
), pp.
321
359
.
4.
Lefebvre
,
A. H.
,
1999
,
Gas Turbine Combustion
,
2nd ed.
,
Taylor & Francis
,
London
.
5.
Drysdale
,
D.
,
1999
,
An Introduction to Fire Dynamics
,
3rd ed.
,
Wiley
,
Chichester, UK
.
6.
Karman
,
T. V.
, and
Millan
,
G.
,
1953
, “
Thermal Theory of a Laminar Flame Front Near a Cold Wall
,”
Proc. Combust. Inst.
,
4
(
1
), pp.
173
177
.
7.
Adamczyk
,
A.
, and
Lavoie
,
G.
,
1978
, “
Laminar Head-On Flame Quenching—A Theoretical Study
,”
SAE
Paper No. 780969
.
8.
Carrier
,
G. F.
,
1979
, “
Nonisenthalpic Interaction of a Planar Premixed Laminar Flame With a Parallel End Wall
,”
SAE
Paper No. 790245
.
9.
Westbrook
,
C. K.
,
Adamczyk
,
A. A.
, and
Lavoie
,
G. A.
,
1981
, “
A Numerical Study of Laminar Flame Wall Quenching
,”
Combust. Flame
,
40
, pp.
81
99
.
10.
Hocks
,
W.
,
Peters
,
N.
, and
Adomeit
,
G.
,
1981
, “
Flame Quenching in Front of a Cold Wall Under Two-Step Kinetics
,”
Combust. Flame
,
41
, pp.
157
170
.
11.
Egolfopoulos
,
F. N.
,
Zhang
,
H.
, and
Zhang
,
Z.
,
1997
, “
Wall Effects on the Propagation and Extinction of Steady, Strained, Laminar Premixed Flames
,”
Combust. Flame
,
109
(
1–2
), pp.
237
252
.
12.
Zhang
,
H.
, and
Chen
,
Z.
,
2013
, “
Effects of Heat Conduction and Radical Quenching on Premixed Stagnation Flame Stabilized by a Wall
,”
Combust. Theory Modell.
,
17
(
4
), pp.
682
706
.
13.
Vlachos
,
D. G.
,
Schmidt
,
L. D.
, and
Aris
,
R.
,
1993
, “
Ignition and Extinction of Flames Near Surfaces: Combustion of H2 in Air
,”
Combust. Flame
,
95
(
3
), pp.
313
335
.
14.
Nakamura
,
H.
,
Fan
,
A.
,
Minamizono
,
H.
,
Maruta
,
K.
,
Kobayashi
,
H.
, and
Niioka
,
T.
,
2009
, “
Bifurcations of Stretched Premixed Flame Stabilized by a Hot Wall
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
1367
1374
.
15.
Altay
,
H. M.
,
Kedia
,
K. S.
,
Speth
,
R. L.
, and
Ghoniem
,
A. F.
,
2010
, “
Two-Dimensional Simulations of Steady Perforated-Plate Stabilized Premixed Flames
,”
Combust. Theor. Model.
,
14
(
1
), pp.
125
154
.
16.
Mallens
,
R. M. M.
, and
Goey
,
L. P. H. D.
,
1998
, “
Flame Cooling by a Curved Burner Wall
,”
Int. J. Heat Mass Transfer
,
41
(
4–5
), pp.
699
707
.
17.
Oijen
,
J. A.
, and
Goey
,
L. P. H.
,
2000
, “
Modelling of Premixed Laminar Flames Using Flamelet-Generated Manifolds
,”
Combust. Sci. Technol.
,
161
(
1
), pp.
113
137
.
18.
Popp
,
P.
, and
Baum
,
M.
,
1997
, “
Analysis of Wall Heat Fluxes, Reaction Mechanisms, and Unburnt Hydrocarbons During the Head-On Quenching of a Laminar Methane Flame
,”
Combust. Flame
,
108
(
3
), pp.
327
348
.
19.
Jiménez
,
J.
,
2013
, “
Near-Wall Turbulence
,”
Phys. Fluids
,
25
(
10
), pp.
101302
101330
.
20.
Grötzbach
,
G.
,
1987
, “
Direct Numerical and Larger Eddy Simulation of Turbulent Channel Flows
,”
Encyclopedia of Fluid Mechanics, West Orange
, NJ, pp.
1337
1391
.
21.
Schmitt
,
P.
,
Poinsot
,
T.
,
Schuermans
,
B.
, and
Geigle
,
K. P.
,
2007
, “
Large-Eddy Simulation and Experimental Study of Heat Transfer, Nitric Oxide Emissions and Combustion Instability in a Swirled Turbulent High-Pressure Burner
,”
J. Fluid Mech.
,
507
, pp.
17
46
.
22.
Bray
,
K. N. C.
, and
Peters
,
N.
,
1994
, “
Laminar Flamelets in Turbulent Flames
,”
Turbulent Reacting Flows
,
P. A.
Libby
and
F.
Williams
, eds.,
Academic
,
New York
.
23.
Hergart
,
C.
, and
Peters
,
N.
,
2001
, “
Applying the Representative Interactive Flamelet Model to Evaluate the Potential Effect of Wall Heat Transfer on Soot Emissions in a Small-Bore Direct-Injection Diesel Engine
,”
ASME J. Eng. Gas Turbines Power
,
124
(
4
), p.
10421052
.
24.
Song
,
L.
, and
Abraham
,
J.
,
2004
, “
A Wall-Modified Flamelet Model for Diesel Combustion
,”
SAE
Paper No. 2004-01-0103.
25.
Kim
,
G.
,
Kang
,
S.
,
Kim
,
Y.
, and
Lee
,
K.-S.
,
2008
, “
Conditional Moment Closure Modeling for a Three-Dimensional Turbulent Non-Premixed Syngas Flame With a Cooling Wall
,”
Energy Fuels
,
22
(
6
), pp.
3639
3648
.
26.
Paola
,
G. D.
,
Mastorakos
,
E.
,
Wright
,
Y. M.
, and
Boulouchos
,
K.
,
2008
, “
Diesel Engine Simulations With Multi-Dimensional Conditional Moment Closure
,”
Combust. Sci. Technol.
,
180
(
5
), pp.
883
899
.
27.
Kariuki
,
J.
,
Dawson
,
J. R.
, and
Mastorakos
,
E.
,
2012
, “
Measurements in Turbulent Premixed Bluff Body Flames Close to Blow-Off
,”
Combust. Flame
,
159
(
8
), pp.
2589
2607
.
28.
Cavaliere
,
D.
,
Kariuki
,
J.
, and
Mastorakos
,
E.
,
2013
, “
A Comparison of the Blow-Off Behaviour of Swirl-Stabilized Premixed, Non-Premixed and Spray Flames
,”
Flow, Turbul. Combust
,
91
(
2
), pp.
347
372
.
29.
Zhang
,
H.
, and
Mastorakos
,
E.
,
2016
, “
Prediction of Global Extinction Conditions and Dynamics in Swirling Non-Premixed Flames Using LES/CMC Modelling
,”
Flow, Turbul. Combust.
,
96
(
4
), pp.
863
889
.
30.
Fureby
,
C.
,
1996
, “
On Subgrid Scale Modeling in Large Eddy Simulations of Compressible Fluid Flow
,”
Phys. Fluids
,
8
(
5
), pp.
1301
1429
.
31.
Pera
,
C.
,
Réveillon
,
J.
,
Vervisch
,
L.
, and
Domingo
,
P.
,
2006
, “
Modeling Subgrid Scale Mixture Fraction Variance in LES of Evaporatimg Spray
,”
Combust. Flame
,
146
(
4
), pp.
635
648
.
32.
Garmory
,
A.
, and
Mastorakos
,
E.
,
2011
, “
Capturing Localised Extinction in Sandia Flame F With LES-CMC
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
1673
1680
.
33.
Pierce
,
C. D.
, and
Moin
,
P.
,
1998
, “
A Dynamic Model for Subgrid-Scale Variance and Dissipation Rate of a Conserved Scalar
,”
Phys. Fluids
,
10
(
12
), pp.
3041
3044
.
34.
Zhang
,
H.
,
Garmory
,
A.
,
Cavaliere
,
D. E.
, and
Mastorakos
,
E.
,
2014
, “
Large Eddy Simulation/Conditional Moment Closure Modeling of Swirl-Stabilized Non-Premixed Flames With Local Extinction
,”
Proc. Combust. Inst.
,
35
(
2
), pp.
1167
1174
.
35.
Garmory
,
A.
, and
Mastorakos
,
E.
,
2014
, “
Numerical Simulation of Oxy-Fuel Jet Flames Using Unstructured LES-CMC
,”
Proc. Combust. Inst.
,
35
(
2
), pp.
1207
1214
.
36.
Clearly
,
M.
, and
Kent
,
J.
,
2005
, “
Modelling of Species in Hood Fires by Conditional Moment Closure
,”
Combust. Flame
,
143
(
4
), pp.
357
368
.
37.
Siwaborworn
,
P.
, and
Kronenburg
,
A.
,
2013
, “
Conservative Implementation of LES-CMC for Turbulent Jet Flames
,”
High Performance Computing in Science and Engineering ‘12
, Nagel, W., Kröner, D., and Resch, M., eds., Springer, Berlin, pp.
159
173
.
38.
Zhang
,
H.
, and
Mastorakos
,
E.
,
2017
, “
Modelling Local Extinction in Sydney Swirling Non-Premixed Flames With LES/CMC
,”
Proc. Combust. Inst.
,
36
(
2
), pp.
1669
1676
.
39.
Brien
,
O. E.
, and
Jiang
,
T. L.
,
1991
, “
The Conditional Dissipation Rate of an Initially Binary Scalar in Homogeneous Turbulence
,”
Phys. Fluids
,
3
(
12
), pp.
3121
3123
.
40.
Triantafyllidis
,
A.
, and
Mastorakos
,
E.
,
2010
, “
Implementation Issues of the Conditional Moment Closure Model in Large Eddy Simulations
,”
Flow, Turbul. Combust.
,
84
(
3
), pp.
481
512
.
41.
Navarro-Martinez
,
S.
,
Kronenburg
,
A.
, and
Mare
,
F. D.
,
2005
, “
Conditional Moment Closure for Large Eddy Simulations
,”
Flow, Turbul. Combust.
,
75
(
1–4
), pp.
245
274
.
42.
Beer
,
J. M.
, and
Chigier
,
N. A.
,
1971
,
Combustion Aerodynamics
,
Applied Science Publishers
,
London
.
43.
Brown
,
P. N.
, and
Hindmarsh
,
A. C.
,
1989
, “
Reduced Storage Matrix Methods in Stiff ODE Systems
,”
J. Appl. Math. Comput.
,
31
, pp.
40
91
.
44.
Sung
,
C. J.
,
Law
,
C. K.
, and
Chen
,
J. Y.
,
1998
, “
An Augmented Reduced Mechanism for Methane Oxidation With Comprehensive Global Parametric Validation
,”
Proc. Combust. Inst.
,
27
(
1
), pp.
295
304
.
45.
Cavaliere
,
D. E.
,
2013
, “
Blow-Off in Gas Turbine Combustors
,”
Ph.D. thesis
, University of Cambridge, Cambridge, UK.http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.648548
46.
Wang, Yi, and Arnaud Trouvé. “Direct numerical simulation of nonpremixed flame-wall interactions.” Combustion and flame 144.3 (2006): 461-475.
47.
Lataillade
,
A. D.
,
Dabireau
,
F.
,
Cuenot
,
B.
, and
Poinsot
,
T.
,
2002
, “
Flame/Wall Interaction and Maximum Wall Heat Fluxes in Diffusion Burners
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
775
779
.
48.
Masri
,
A. R.
,
Dibble
,
R. W.
, and
Barlow
,
R. S.
,
1996
, “
The Structure of Turbulent Nonpremixed Flames Revealed by Raman-Rayleigh-LIF Measurements
,”
Prog. Energy Combust. Sci.
,
22
(
4
), pp.
307
362
.
49.
Kariuki
,
J.
,
2012
,
Turbulent Premixed Flame Stabilization and Blow-Off
,
University of Cambridge
,
Cambridge, UK
.
You do not currently have access to this content.