Turbulent spray combustion of n-dodecane was modeled at relevant engine conditions using two combustion models (direct integration of chemistry (DIC) and flamelet generated manifolds (FGM)) and multifidelity turbulence models (dynamic structure large eddy simulation (LES) and renormalization group (RNG) Reynolds-averaged Naiver–Stokes (RANS)). The main objective of this work is to study the effect of various combustion and turbulence models on spray behavior and quantify these effects. To reach these objectives, a recently developed kinetic mechanism and well-established spray models were utilized for the three-dimensional turbulent spray simulation at various combustion chamber initial gas temperature and pressure conditions. Fine mesh with a size of 31 μm was utilized to resolve small eddies in the periphery of the spray. In addition, a new methodology for mesh generation was proposed and investigated to simulate the measured data fluctuation in the CFD domain. The pressure-based ignition delay, flame lift-off length (LOL), species concentrations, spray, and jet penetrations were modeled and compared with measured data. Differences were observed between various combustion and turbulence models in predicting the spray characteristics. However, these differences are within the uncertainties, error, and variations of the measured data.

References

References
1.
Samimi Abianeh
,
O.
,
Curtis
,
N.
, and
Sung
,
C. J.
,
2016
, “
Determination of Modeled Luminosity-Based and Pressure-Based Ignition Delay Times of Turbulent Spray Combustion
,”
Int. J. Heat Mass Transfer
,
103
, pp.
1297
1312
.
2.
Pope
,
S. B.
,
2003
, “
CEQ: A Fortran Library to Compute Equilibrium Compositions Using Gibbs Function Continuation
,” accessed June 30, 2018, http://mae.cornell.edu/∼pope/CEQ
3.
Peters
,
N.
,
2000
,
Turbulent Combustion
,
Cambridge University Press
, Cambridge, UK.
4.
Colin
,
O.
,
Benkenida
,
A.
, and
Angelberger
,
C.
,
2003
, “
3D Modeling of Mixing, Ignition and Combustion Phenomena in Highly Stratified Gasoline Engines
,”
Oil Gas Sci. Technol., Rev. IFP
,
58
(
1
), pp.
47
62
.
5.
Van Oijende Goey
,
L.
,
2000
, “
Modelling of Premixed Laminar Flames Using Flamelet-Generated Manifolds
,”
Combust. Sci. Technol.
,
161
(
1
), pp.
113
137
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.624.5557&rep=rep1&type=pdf
6.
Richards
,
K. J.
,
Senecal
,
P. K.
, and
Pomraning
,
E.
,
2016
, “
CONVERGE (Version 2.3) Manual
,” Convergent Science, Middleton, WI.
7.
Bass
,
C. A.
, Jr.
, and
Barat
,
R. B.
,
2003
, “
Simulation of a Toroidal Jet-Stirred Combustor Using a Partially Stirred Reactor Model With Detailed Kinetic Mechanisms
,”
Combust. Flame
,
135
(
3
), pp.
249
259
.
8.
Elkady
,
A.
,
Kalitan
,
D.
,
Akula
,
R.
,
Karim
,
H.
,
Hadley
,
M.
,
Leonard
,
G.
, and
Herbon
,
J.
,
2012
, “
Gas Turbine Emission Characteristics in Perfectly Premixed Combustion
,”
ASME J. Eng. Gas Turbines Power
,
134
(
6
), p.
061501
.
9.
Cemal Benim
,
A.
,
Iqbal
,
S.
,
Joos
,
F.
, and
Wiedermann
,
A.
,
2016
, “
Numerical Analysis of Turbulent Combustion in a Model Swirl Gas Turbine Combustor
,”
J. Combust.
,
2016
, p.
12
.
10.
Issa
,
R. I.
,
1986
, “
Solution of Implicitly Discretised Fluid Flow Equations by Operator-Splitting
,”
J. Comput. Phys.
,
62
(
1
), pp.
40
65
.
11.
Som
,
S.
,
Senecal
,
P. K.
, and
Pomraning
,
E.
,
2012
, “
Comparison of RANS and LES Turbulence Models against Constant Volume Diesel Experiments
,”
24th Annual Conference on Liquid Atomization and Spray Systems
(
ILASS
), San Antonio, TX, May 20–23.http://www.ilass.org/2/conferencepapers/65.pdf
12.
Reitz
,
R.
, and
Diwakar
,
R.
,
1987
, “
Structure of High- Pressure Fuel Sprays
,”
SAE
Paper No. 870598.
13.
Schmidt
,
D. P.
, and
Rutland
,
C. J.
,
2000
, “
A New Droplet Collision Algorithm
,”
J. Comput. Phys.
,
164
(
1
), pp.
62
80
.
14.
Post
,
S. L.
, and
Abraham
,
J.
,
2002
, “
Modeling the Outcome of Drop-Drop Collisions in Diesel Sprays
,”
Int. J. Multiphase Flow
,
28
(
6
), pp.
997
1019
.
15.
Amsden
,
A. A.
,
O'Rourke
,
P. J.
, and
Butler
,
T. D.
,
1989
,
KIVA-II: A Computer Program for Chemically Reactive Flows With Sprays
, Los Alamos National Lab.,
Los Alamos, NM
.
16.
Samimi Abianeh
,
O.
, and
Chen
,
C. P.
,
2012
, “
A Discrete Multicomponent Fuel Evaporation Model With Liquid Turbulence Effects
,”
Int. J. Heat Mass Transfer
,
55
(
23–24
), pp.
6897
6907
.
17.
Samimi Abianeh
,
O.
,
Chen
,
C. P.
, and
Mahalingam
,
S.
,
2914
, “
Numerical Modeling of Multi-Component Fuel Spray Evaporation Process
,”
Int. J. Heat Mass Transfer
,
69
, pp.
44
53
.
18.
Smith
,
J. M.
,
Van Ness
,
H. C.
, and
Abbott
,
M. M.
,
2005
,
Introduction to Chemical Engineering Thermodynamics
,
McGraw-Hill
, New York.
19.
Pomraning
,
E.
,
2000
, “
Development of Large Eddy Simulation Turbulence Models
,”
Ph.D. thesis
, University of Wisconsin-Madison, Madison, WI.
20.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
, Cambridge, UK.
21.
Ferry
,
T.
, and
Schapotschnikow
,
P.
,
2012
, “
Efficient Combustion Modeling Based on Tabkin® CFD Look-Up Tables: A Case Study of a Lifted Diesel Spray Flame
,”
SAE
Paper No. 2012-01-0152.
22.
Lillo
,
P. M.
,
Pickett
,
L. M.
,
Kook
,
S.
,
Persson
,
H.
, and
Andersson
,
Ö.
,
2012
, “
Diesel Spray Ignition Detection and Spatial/Temporal Correction
,”
SAE
Paper 2012-01-1239.
23.
Goyal
,
A.
,
Samimi Abianeh
,
O.
, and
Bravo
,
L.
,
2017
, “
Dependency of Turbulent Spray Combustion Modeling on Mesh Resolution Using Flamelet Generated Manifolds
,”
Tenth U. S. National Combustion Meeting
, College Park, MD, Apr. 23–24.https://www.researchgate.net/publication/315379032_Dependency_of_Turbulent_Spray_Combustion_Modeling_on_Mesh_Resolution_Using_Flamelet_Generated_Manifolds
24.
U.S. ARL/DSRC, 2012, “
High Performance Computing Systems
,” U.S. Army Research Laboratory, DoD Supercomputing Resource Center, Washington, DC, accessed July 3, 2018, https://www.arl.hpc.mil/hardware/index.html
You do not currently have access to this content.