Propulsion diagnostic method evaluation strategy (ProDiMES) offers an aircraft engine diagnostic benchmark problem where the performance of candidate diagnostic methods is evaluated while a fair comparison can be established. In the present paper, the performance evaluation of a number of gas turbine diagnostic methods using the ProDiMES software is presented. All diagnostic methods presented here were developed at the Laboratory of Thermal Turbomachinery of the National Technical University of Athens (LTT/NTUA). Component, sensor, and actuator fault scenarios that occur in a fleet of deteriorated twin-spool turbofan engines are considered. The performance of each diagnostic method is presented through the evaluation metrics introduced in the ProDiMES software. Remarks about each methods performance as well as the detectability and classification rates of each fault scenario are made.

References

References
1.
Volponi
,
A. J.
,
2014
, “
Gas Turbine Engine Health Management: Past, Present, and Future Trends
,”
ASME J. Eng. Gas Turbines Power
,
136
(
5
), p.
051201
.
2.
Simon
,
D. L.
,
Borguet
,
S.
,
Leonard
,
O.
, and
Zhang
,
X.
,
2013
, “
Aircraft Engine Gas Path Diagnostic Methods: Public Benchmarking Results
,”
ASME J. Eng. Gas Turbines Power
,
136
(
4
), p.
041201
.
3.
Simon
,
D. L.
,
2010
, “
Propulsion Diagnostic Method Evaluation Strategy (ProDiMES) User's Guide
,” NASA Glenn Research Center, Cleveland, OH, Technical Report No.
NASA/TM-2010-215840
. https://ntrs.nasa.gov/search.jsp?R=20100005639
4.
Mathioudakis
,
K.
,
Kamboukos
,
P.
, and
Stamatis
,
A.
,
2004
, “
Turbofan Performance Deterioration Tracking Using Nonlinear Models and Optimization Techniques
,”
J. Power Energy
,
218
(
8
), pp.
609
618
.
5.
DePold
,
H. R.
, and
Gass
,
F. D.
,
1999
, “
The Application of Expert Systems and Neural Networks to Gas Turbine Prognostics and Diagnostics
,”
ASME J. Eng. Gas Turbines Power
,
121
(
4
), pp.
607
612
.
6.
Basseville
,
M.
, and
Nikiforov
,
I. V.
,
1993
,
Detection of Abrupt Changes
,
Prentice Hall
,
Englewood Cliffs, NJ
.
7.
Breipohl
,
A. M.
,
1970
,
Probabilistic Systems Analysis: An Introduction to Probabilistic Models, Decisions, and Applications of Random Processes
,
Wiley
,
New York
.
8.
Romesis
,
C.
, and
Mathioudakis
,
K.
,
2002
, “
Setting Up of a Probabilistic Neural Network for Sensor Fault Detection Including Operation With Component Faults
,”
ASME J. Eng. Gas Turbines Power
,
125
(
3
), pp.
634
641
.
9.
Duda
,
R. O.
,
Hart
,
P. E.
, and
Stork
,
D. G.
,
2000
,
Pattern Classification
,
Wiley
,
New York
.
10.
Fletcher
,
R.
,
1987
,
Practical Methods of Optimization
,
Wiley
,
New York
.
11.
Gill
,
P. E.
,
Murray
,
W.
, and
Wright
,
W. H.
,
1981
,
Practical Optimization
,
Academic Press
,
London
.
12.
Powell
,
M. J. D.
,
1983
, “
Variable Metric Methods for Constrained Optimization
,”
Mathematical Programming: The State of the Art
,
Springer Verlag
,
Berlin
, pp.
288
311
.
13.
Hock
,
W.
, and
Schittkowski
,
K.
,
1983
, “
A Comparative Performance Evaluation of 27 Nonlinear Programming Codes
,”
Computing
,
30
(
4
), p.
335
.
14.
Aretakis
,
N.
,
Mathioudakis
,
K.
, and
Stamatis
,
A.
,
2003
, “
Non-Linear Engine Component Fault Diagnosis From a Limited Number of Measurements Using a Combinatorial Approach
,”
ASME J. Eng. Gas Turbines Power
,
125
(
3
), pp.
642
650
.
15.
Stamatis
,
A.
,
Mathioudakis
,
K.
, and
Papailiou
,
K.
,
1992
, “
Optimal Measurements and Health Indices Selection for Gas Turbine Performance Status and Fault Diagnosis
,”
ASME J. Eng. Gas Turbines Power
,
114
(
2
), pp.
209
216
.
You do not currently have access to this content.