The widespread adoption of blade integrated disks (blisks) made of titanium demands tailored regeneration processes to increase sustainability and economic efficiency. High standards regarding geometrical accuracy and functional properties as well as the unique characteristics of each type of damage complicate the repair. Thus, flexible and well-designed processes are necessary. Typically, material deposit is followed by a milling or grinding process to restore the original shape. Here, the individual repair processes not only have to be controlled but also their interaction. For example, depending on the resulting microstructure of the welded seam, the recontouring process needs to be adapted to minimize tool wear as well as shape deviations of the complex blade geometries. In this paper, the process chain for a patch repair is examined, consisting of a tungsten inert gas (TIG) welding process followed by five-axis ball nose end milling. Conventional TIG as well as a modified TIG process producing a finer grain structure and enhanced mechanical properties of deposited material was investigated. Grain refinement was achieved by SiC particles added to the weld pool. Based on the characteristics of the fusion material and static stiffness of the component, a methodology is introduced to minimize shape deviation induced by the subsequent milling process. Special attention is given to tool orientation, which has a significant impact on the kinematics and resulting process forces during milling. An electromagnetic guided machine tool is used for compensation of workpiece deflection.

References

References
1.
Brinksmeier
,
E.
,
Berger
,
U.
, and
Janssen
,
R.
,
1998
, “
Advanced Mechatronic Technology for Turbine Blades Maintenance
,”
First IEE/IMechE International Conference on Power Station Maintenance—Profitability Through Reliability
, Mar. 30–Apr. 1, pp. 184–189.
2.
Uhlmann
,
E.
,
Bilz
,
M.
, and
Baumgarten
,
J.
,
2013
, “
MRO—Challenge and Chance for Sustainable Enterprises
,”
Proc. CIRP
,
11
, pp.
239
244
.
3.
Uhlmann
,
E.
, and
Lypovka
,
P.
,
2013
, “
Steigerung Der Werkzeugstandzeit Und Prozesssicherheit Bei Der Schweißnahtnachbearbeitung Durch Angepasste Fräswerkzeuge
,”
Zwf
,
108
(7–8), pp. 504–508.
4.
Mehdi
,
B.
,
Badji
,
R.
,
Ji
,
V.
,
Allili
,
B.
,
Bradai
,
D.
,
Deschaux-Beaume
,
F.
, and
Soulié
,
F.
,
2016
, “
Microstructure and Residual Stresses in Ti-6Al-4V Alloy Pulsed and Unpulsed TIG Welds
,”
J. Mater. Process. Technol.
,
231
, pp.
441
448
.
5.
Balasubramanian
,
M.
,
Jayabalan
,
V.
, and
Balasubramanian
,
V.
,
2008
, “
Effect of Microstructure on Impact Toughness of Pulsed Current GTA Welded α-β Titanium Alloy
,”
Mater. Lett
,
62
(
6–7
), pp.
1102
1106
.
6.
Peters
,
M.
, and
Leyens
,
C.
,
2007
,
Titan Und Titanlegierungen
,
1st ed.
,
Wiley-VCH
,
Weinheim
, German.
7.
Balasubramanian
,
T. S.
,
Balakrishnan
,
M.
,
Balasubramanian
,
V.
, and
Muthu Manickam
,
M. A.
,
2013
, “
Effect of Welding Processes on Joint Characteristics of Ti-6Al-4V Alloy
,”
Sci. Technol. Weld. Joining
,
16
(
8
), pp.
702
708
.
8.
Balasubramanian
,
V.
,
Jayabalan
,
V.
, and
Balasubramanian
,
M.
,
2008
, “
Effect of Current Pulsing on Tensile Properties of Titanium Alloy
,”
Mater. Des.
,
29
(
7
), pp.
1459
1466
.
9.
Bermingham
,
M.
,
McDonald
,
S.
,
Dargusch
,
M. S.
, and
StJohn
,
D.
,
2009
, “
Latest Developments in Understanding the Grain Refinement of Cast Titanium
,”
Mater. Sci. Forum
, pp.
315
318
.
10.
Ozturk
,
E.
,
Tunc
,
L. T.
, and
Budak
,
E.
,
2009
, “
Investigation of Lead and Tilt Angle Effects in 5-Axis Ball-End Milling Processes
,”
Int. J. Mach. Tools Manuf.
,
49
(
14
), pp.
1053
1062
.
11.
Ozturk
,
E.
, and
Budak
,
E.
,
2007
, “
Modeling of 5-Axis Milling Processes
,”
Mach. Sci. Technol.
,
11
(
3
), pp.
287
311
.https://www.tandfonline.com/doi/abs/10.1080/10910340701554808
12.
Tuysuz
,
O.
,
Altintas
,
Y.
, and
Feng
,
H. Y.
,
2013
, “
Prediction of Cutting Forces in Three and Five-Axis Ball-End Milling With Tool Indentation Effect
,”
Int. J. Mach. Tools Manuf.
,
66
, pp.
66
81
.
13.
Layegh
,
K. S. E.
,
Yigit
,
I. E.
, and
Lazoglu
,
I.
,
2015
, “
Analysis of Tool Orientation for 5-Axis Ball-End Milling of Flexible Parts
,”
CIRP Ann.
,
64
(
1
), pp.
97
100
.
14.
Bons
,
J. P.
,
2010
, “
A Review of Surface Roughness Effects in Gas Turbines
,”
ASME J. Turbomach.
,
132
(
2
), p.
021004
.
15.
Layegh K
,
S. E.
, and
Lazoglu
,
I.
,
2017
, “
3D Surface Topography Analysis in 5-Axis Ball-End Milling
,”
CIRP Ann.
,
66
(
1
), pp.
133
136
.
16.
Elbestawi
,
M. A.
,
Ismail
,
F.
, and
Yuen
,
K. M.
,
1994
, “
Surface Topography Characterization in Finish Milling
,”
Int. J. Mach. Tools Manuf.
,
34
(
2
), pp.
245
255
.
17.
Nespor
,
D.
,
Denkena
,
B.
,
Grove
,
T.
, and
Pape
,
O.
,
2016
, “
Surface Topography After Re-contouring of Welded Ti 6Al 4V Parts by Means of 5-Axis Ball Nose End Milling
,”
Int. J. Adv. Manuf. Technol.
,
85
(
5-8
), pp.
1585
1602
.
18.
Flöter
,
F.
,
2017
,
Potentiale Einer Elektromagnetischen Führung in Fräsmaschinen Und Ihr Nutzen Für Die Reparaturbearbeitung
,
1st ed.
,
TEWISS
,
Garbsen
, German.
19.
Keiser
,
R.
,
2007
,
Kompensation Von Statischen Und Dynamischen Verlagerungen Im Fräsprozess
,
Shaker
,
Aachen
, German.
20.
Denkena
,
B.
,
Möhring
,
H.-C.
, and
Will
,
J. C.
,
2007
, “
Tool Deflection Compensation With an Adaptronic Milling Spindle
,”
International Conference on Smart Machining Systems
, Gaithersburg, MD, Mar. 13–15, pp. 1–4.
21.
Denkena
,
B.
,
Böß
,
V.
,
Nespor
,
D.
,
Rust
,
F.
, and
Flöter
,
F.
,
2014
, “
Approaches for Improving Cutting Processes and Machine Tools in Re-Contouring
,”
Proc. CIRP
,
22
, pp.
239
242
.
22.
Denkena
,
B.
,
Nespor
,
D.
,
Böß
,
V.
, and
Köhler
,
J.
,
2014
, “
Residual Stresses Formation After Re-contouring of Welded Ti-6Al-4V Parts by Means of 5-Axis Ball Nose End Milling
,”
CIRP J. Manuf. Sci. Technol.
,
7
(
4
), pp.
347
360
.
23.
Engin
,
S.
, and
Altintas
,
Y.
,
1999
, “
Generalized Modeling of Milling Mechanics and Dynamics—Part I: Helical End Mills
,”
Am. Soc. Mech. Eng. Manuf. Eng. Div. Med.
,
10
, pp.
345
352
.https://www.researchgate.net/publication/253872019_Generalized_modeling_of_milling_mechanics_and_dynamics_Part_I_-_helical_end_mills
24.
Gradišek
,
J.
,
Kalveram
,
M.
, and
Weinert
,
K.
,
2004
, “
Mechanistic Identification of Specific Force Coefficients for a General End Mill
,”
Int. J. Mach. Tools Manuf.
,
44
(
4
), pp.
401
414
.
25.
Denkena
,
B.
,
Böß
,
V.
,
Nespor
,
D.
, and
Rust
,
F.
,
2015
, “
Simulation and Evaluation of Different Process Strategies in a 5-Axis Re-Contouring Process
,”
Proc. CIRP
,
35
, pp.
31
37
.
You do not currently have access to this content.