Domestic scale heat pumps and air conditioners are mainly driven by volumetric compressors. Yet the use of reduced scale centrifugal compressors is reconsidered due to their high efficiency and power density. The design procedure of centrifugal compressors starts with predesign tools based on the Cordier line. However, the optimality of the obtained predesign, which is the starting point of a complex and iterative process, is not guaranteed, especially for small-scale compressors operating with refrigerants. This paper proposes a data-driven predesign tool tailored for small-scale centrifugal compressors used in refrigeration applications. The predesign model is generated using an experimentally validated one-dimensional (1D) code which evaluates the compressor performance as a function of its detailed geometry and operating conditions. Using a symbolic regression tool, a reduced order model that predicts the performance of a given compressor geometry has been built. The proposed predesign model offers an alternative to the existing tools by providing a higher level of detail and flexibility. Particularly, the model includes the effect of the pressure ratio, the blade height ratio, and the shroud to tip radius ratio. The analysis of the centrifugal compressor losses allows identifying the underlying phenomena that shape the new isentropic efficiency contours. Compared to the validated 1D code, the new predesign model yields deviations below 4% on the isentropic efficiency, while running 1500 times faster. The new predesign model is, therefore, of significant interest when the compressor is part of an integrated system design process.
Skip Nav Destination
Article navigation
December 2018
Research-Article
Data-Driven Predesign Tool for Small-Scale Centrifugal Compressor in Refrigeration
Mounier Violette,
Mounier Violette
Laboratory for Applied Mechanical Design,
École polytechnique fédérale de Lausanne,
Neuchâtel 2000, Switzerland
e-mail: violette.mounier@epfl.ch
École polytechnique fédérale de Lausanne,
Neuchâtel 2000, Switzerland
e-mail: violette.mounier@epfl.ch
Search for other works by this author on:
Picard Cyril,
Picard Cyril
Laboratory for Applied Mechanical Design,
École polytechnique fédérale de Lausanne,
Neuchâtel 2000, Switzerland
e-mail: cyril.picard@epfl.ch
École polytechnique fédérale de Lausanne,
Neuchâtel 2000, Switzerland
e-mail: cyril.picard@epfl.ch
Search for other works by this author on:
Schiffmann Jürg
Schiffmann Jürg
Laboratory for Applied Mechanical Design,
École polytechnique fédérale de Lausanne,
Neuchâtel 2000, Switzerland
e-mail: jurg.schiffmann@epfl.ch
École polytechnique fédérale de Lausanne,
Neuchâtel 2000, Switzerland
e-mail: jurg.schiffmann@epfl.ch
Search for other works by this author on:
Mounier Violette
Laboratory for Applied Mechanical Design,
École polytechnique fédérale de Lausanne,
Neuchâtel 2000, Switzerland
e-mail: violette.mounier@epfl.ch
École polytechnique fédérale de Lausanne,
Neuchâtel 2000, Switzerland
e-mail: violette.mounier@epfl.ch
Picard Cyril
Laboratory for Applied Mechanical Design,
École polytechnique fédérale de Lausanne,
Neuchâtel 2000, Switzerland
e-mail: cyril.picard@epfl.ch
École polytechnique fédérale de Lausanne,
Neuchâtel 2000, Switzerland
e-mail: cyril.picard@epfl.ch
Schiffmann Jürg
Laboratory for Applied Mechanical Design,
École polytechnique fédérale de Lausanne,
Neuchâtel 2000, Switzerland
e-mail: jurg.schiffmann@epfl.ch
École polytechnique fédérale de Lausanne,
Neuchâtel 2000, Switzerland
e-mail: jurg.schiffmann@epfl.ch
1Corresponding author.
Manuscript received June 27, 2018; final manuscript received July 3, 2018; published online October 24, 2018. Editor: Jerzy T. Sawicki.
J. Eng. Gas Turbines Power. Dec 2018, 140(12): 121011 (8 pages)
Published Online: October 24, 2018
Article history
Received:
June 27, 2018
Revised:
July 3, 2018
Connected Content
Citation
Violette, M., Cyril, P., and Jürg, S. (October 24, 2018). "Data-Driven Predesign Tool for Small-Scale Centrifugal Compressor in Refrigeration." ASME. J. Eng. Gas Turbines Power. December 2018; 140(12): 121011. https://doi.org/10.1115/1.4040845
Download citation file:
Get Email Alerts
Cited By
Multi-Disciplinary Optimization of Gyroid Topologies for a Cold Plate Heat Exchanger Design
J. Eng. Gas Turbines Power
Comparison of Rim Sealing Effectiveness in Different Geometrical Configurations
J. Eng. Gas Turbines Power
Related Articles
Prediction of the Nonuniform Tip Clearance Effect on the Axial Compressor Flow Field
J. Fluids Eng (May,2010)
Compressor Leading Edge Spikes: A New Performance Criterion
J. Turbomach (April,2011)
Vorticity Dynamics in Axial Compressor Flow Diagnosis and Design
J. Fluids Eng (April,2008)
An Experimental Study of Vane Clocking Effects on Embedded Compressor Stage Performance
J. Turbomach (January,2010)
Related Chapters
Boundary Layer Analysis
Centrifugal Compressors: A Strategy for Aerodynamic Design and Analysis
Control and Operational Performance
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Aerodynamic Performance Analysis
Axial-Flow Compressors