The present paper reports experimental and numerical analyses of the macrostructures featured by a stratified swirling flame for varying stratification ratio (SR). The studies are performed with the Beihang Axial Swirler Independently Stratified (BASIS) burner, a novel double-swirled full-scale burner developed at Beihang University. Experimentally, it is found that depending on the ratio between the equivalence ratios of the methane–air mixtures from the two swirlers, the flame stabilizes with three different shapes: attached V-flame, attached stratified flame, and lifted flame. In order to better understand the mechanisms leading to the three macrostructures, large eddy simulations (LES) are performed via the open-source computational fluid dynamics (CFD) software OpenFOAM using the incompressible solver ReactingFoam. Changing SR, simulation results show good agreement with experimentally observed time-averaged flame shapes, demonstrating that the incompressible LES are able to fully characterize the different flame behaviors observed in stratified burners. When the LES account for heat loss from walls, they better capture the experimentally observed flame quenching in the outer shear layer (OSL). Finally, insights into the flame dynamics are provided by analyzing probes located near the two separate streams.

References

References
1.
Mongia
,
H.
,
2003
, “
TAPS: A Fourth Generation Propulsion Combustor Technology for Low Emissions
,”
AIAA
Paper No. 2003-2657.
2.
Lieuwen
,
T. C.
, and
Yang
,
V.
, eds.,
2005
,
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms and Modeling
(Progress in Astronautics and Aeronautics, Vol. 210),
American Institute of Aeronautics and Astronautics
, Reston, VA.
3.
Temme
,
J. E.
,
Allison
,
P. M.
, and
Driscoll
,
J. F.
,
2014
, “
Combustion Instability of a Lean Premixed Prevaporized Gas Turbine Combustor Studied Using Phase-Averaged PIV
,”
Combust. Flame
,
161
(
4
), pp.
958
970
.
4.
Shanbhogue
,
S.
,
Sanusi
,
Y.
,
Taamallah
,
S.
,
Habib
,
M.
,
Mokheimer
,
E.
, and
Ghoniem
,
A.
,
2016
, “
Flame Macrostructures, Combustion Instability and Extinction Strain Scaling in Swirl-Stabilized Premixed CH4/H2 Combustion
,”
Combust. Flame
,
163
, pp.
494
507
.
5.
Chong
,
C. T.
,
Lam
,
S. S.
, and
Hochgreb
,
S.
,
2016
, “
Effect of Mixture Flow Stratification on Premixed Flame Structure and Emissions Under Counter-Rotating Swirl Burner Configuration
,”
Appl. Therm. Eng.
,
105
, pp.
905
912
.
6.
Lieuwen
,
T.
,
McDonell
,
V.
,
Petersen
,
E.
, and
Santavicca
,
D.
,
2008
, “
Fuel Flexibility Influences on Premixed Combustor Blowout, Flashback, Autoignition, and Stability
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), p.
011506
.
7.
Taamallah
,
S.
,
LaBry
,
Z. A.
,
Shanbhogue
,
S. J.
, and
Ghoniem
,
A. F.
,
2015
, “
Thermo-Acoustic Instabilities in Lean Premixed Swirl-Stabilized Combustion and Their Link to Acoustically Coupled and Decoupled Flame Macrostructures
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3273
3282
.
8.
Santhosh
,
R.
, and
Basu
,
S.
,
2016
, “
Transitions and Blow–Off of Unconfined Non-Premixed Swirling Flame
,”
Combust. Flame
,
164
, pp.
35
52
.
9.
Chterev
,
I.
,
Foley
,
C.
,
Foti
,
D.
,
Kostka
,
S.
,
Caswell
,
A. W.
,
Jiang
,
N.
,
Lynch
,
A.
,
Noble
,
D.
,
Menon
,
S.
,
Seitzman
,
J. M.
, and
Lieuwen, T. C.
,
2014
, “
Flame and Flow Topologies in an Annular Swirling Flow
,”
Combust. Sci. Technol.
,
186
(
8
), pp.
1041
1074
.
10.
Taamallah
,
S.
,
Shanbhogue
,
S. J.
, and
Ghoniem
,
A. F.
,
2016
, “
Turbulent Flame Stabilization Modes in Premixed Swirl Combustion: Physical Mechanism and Karlovitz Number-Based Criterion
,”
Combust. Flame
,
166
, pp.
19
33
.
11.
Johnson
,
M.
,
Littlejohn
,
D.
,
Nazeer
,
W.
,
Smith
,
K.
, and
Cheng
,
R.
,
2005
, “
A Comparison of the Flowfields and Emissions of High-Swirl Injectors and Low-Swirl Injectors for Lean Premixed Gas Turbines
,”
Proc. Combust. Inst.
,
30
(
2
), pp.
2867
2874
.
12.
Watanabe
,
H.
,
Shanbhogue
,
S. J.
,
Taamallah
,
S.
,
Chakroun
,
N. W.
, and
Ghoniem
,
A. F.
,
2016
, “
The Structure of Swirl-Stabilized Turbulent Premixed CH4/Air and CH4/O2/CO2 Flames and Mechanisms of Intense Burning of Oxy-Flames
,”
Combust. Flame
,
174
, pp.
111
119
.
13.
Stopper
,
U.
,
Meier
,
W.
,
Sadanandan
,
R.
,
Sthr
,
M.
,
Aigner
,
M.
, and
Bulat
,
G.
,
2013
, “
Experimental Study of Industrial Gas Turbine Flames Including Quantification of Pressure Influence on Flow Field, Fuel/Air Premixing and Flame Shape
,”
Combust. Flame
,
160
(
10
), pp.
2103
2118
.
14.
Tay-Wo-Chong
,
L.
, and
Polifke
,
W.
,
2012
, “
LES-Based Study of the Influence of Thermal Boundary Condition and Combustor Confinement on Premix Flame Transfer Functions
,”
ASME
Paper No. GT2012-68796.
15.
Huang
,
Y.
, and
Yang
,
V.
,
2004
, “
Bifurcation of Flame Structure in a Lean-Premixed Swirl-Stabilized Combustor: Transition From Stable to Unstable Flame
,”
Combust. Flame
,
136
(
3
), pp.
383
389
.
16.
Guiberti
,
T. F.
,
Durox
,
D.
,
Zimmer
,
L.
, and
Schuller
,
T.
,
2015
, “
Analysis of Topology Transitions of Swirl Flames Interacting With the Combustor Side Wall
,”
Combust. Flame
,
162
(
11
), pp.
4342
4357
.
17.
Guiberti
,
T. F.
,
Durox
,
D.
,
Scouflaire
,
P.
, and
Schuller
,
T.
,
2015
, “
Impact of Heat Loss and Hydrogen Enrichment on the Shape of Confined Swirling Flames
,”
Proc. Combust. Inst.
,
35
(
2
), pp.
1385
1392
.
18.
Taamallah
,
S.
,
LaBry
,
Z. A.
,
Shanbhogue
,
S. J.
,
Habib
,
M. A.
, and
Ghoniem
,
A. F.
,
2015
, “
Correspondence Between Stable Flame Macrostructure and Thermo-Acoustic Instability in Premixed Swirl-Stabilized Turbulent Combustion
,”
ASME J. Eng. Gas Turbines Power
,
137
(
7
), p.
071505
.
19.
De Rosa
,
A. J.
,
Peluso
,
S. J.
,
Quay
,
B. D.
, and
Santavicca
,
D. A.
,
2016
, “
The Effect of Confinement on the Structure and Dynamic Response of Lean-Premixed, Swirl-Stabilized Flames
,”
ASME J. Eng. Gas Turbines Power
,
138
(
6
), p.
061507
.
20.
Kim
,
K.
, and
Hochgreb
,
S.
,
2012
, “
Effects of Nonuniform Reactant Stoichiometry on Thermoacoustic Instability in a Lean-Premixed Gas Turbine Combustor
,”
Combust. Sci. Technol.
,
184
(
5
), pp.
608
628
.
21.
Dhanuka
,
S. K.
,
Temme
,
J. E.
, and
Driscoll
,
J.
,
2011
, “
Unsteady Aspects of Lean Premixed Prevaporized Gas Turbine Combustors: Flame-Flame Interactions
,”
J. Propul. Power
,
27
(
3
), pp.
631
641
.
22.
Yao
,
K.
,
Lin
,
Y. Z.
,
Zhen-Bo
,
F. U.
, and
Chi
,
Z.
,
2014
, “
Effects of Step Height on Low Emission Stirred Swirl Combustor
,”
J. Prop. Technol.
,
35
(
7
), pp.
941
949
(in Chinese).
23.
Li
,
L.
,
Lin
,
Y.
,
Fu
,
Z.
, and
Zhang
,
C.
,
2016
, “
Emission Characteristics of a Model Combustor for Aero Gas Turbine Application
,”
Exp. Therm. Fluid Sci.
,
72
, pp.
235
248
.
24.
Kewlani
,
G.
,
Shanbhogue
,
S.
, and
Ghoniem
,
A.
,
2016
, “
Investigations Into the Impact of the Equivalence Ratio on Turbulent Premixed Combustion Using Particle Image Velocimetry and Large Eddy Simulation Techniques: V and M Flame Configurations in a Swirl Combustor
,”
Energy Fuels
,
30
(
4
), pp.
3451
3462
.
25.
Fiorina
,
B.
,
Mercier
,
R.
,
Kuenne
,
G.
,
Ketelheun
,
A.
,
Avdić
,
A.
,
Janicka
,
J.
,
Geyer
,
D.
,
Dreizler
,
A.
,
Alenius
,
E.
,
Duwig
,
C.
, and
Trisiono, P.
,
2015
, “
Challenging Modeling Strategies for LES of Non-Adiabatic Turbulent Stratified Combustion
,”
Combust. Flame
,
162
(
11
), pp.
4264
4282
.
26.
Bauerheim
,
M.
,
Staffelbach
,
G.
,
Worth
,
N. A.
,
Dawson
,
J.
,
Gicquel
,
L. Y.
, and
Poinsot
,
T.
,
2015
, “
Sensitivity of LES-Based Harmonic Flame Response Model for Turbulent Swirled Flames and Impact on the Stability of Azimuthal Modes
,”
Prog. Energy Combust. Sci.
,
35
(
3
), pp.
3355
3363
.
27.
Tachibana
,
S.
,
Saito
,
K.
,
Yamamoto
,
T.
,
Makida
,
M.
,
Kitano
,
T.
, and
Kurose
,
R.
,
2015
, “
Experimental and Numerical Investigation of Thermo-Acoustic Instability in a Liquid-Fuel Aero-Engine Combustor at Elevated Pressure: Validity of Large-Eddy Simulation of Spray Combustion
,”
Combust. Flame
,
162
(
6
), pp.
2621
2637
.
28.
Lefebvre
,
A. H.
,
1998
,
Gas Turbine Combustion
,
CRC Press
, Boca Raton, FL.
29.
Huang
,
Y.
, and
Yang
,
V.
,
2009
, “
Dynamics and Stability of Lean-Premixed Swirl-Stabilized Combustion
,”
Prog. Energy Combust. Sci.
,
35
(
4
), pp.
293
364
.
30.
Hardalupas
,
Y.
, and
Orain
,
M.
,
2004
, “
Local Measurements of the Time-Dependent Heat Release Rate and Equivalence Ratio Using Chemiluminescent Emission From a Flame
,”
Combust. Flame
,
139
(
3
), pp.
188
207
.
31.
Kim
,
K.
, and
Hochgreb
,
S.
,
2011
, “
The Nonlinear Heat Release Response of Stratified Lean-Premixed Flames to Acoustic Velocity Oscillations
,”
Combust. Flame
,
158
(
12
), pp.
2482
2499
.
32.
Dasch
,
C. J.
,
1992
, “
One-Dimensional Tomography: A Comparison of Abel, Onion-Peeling, and Filtered Backprojection Methods
,”
Appl. Opt.
,
31
(
8
), pp.
1146
1152
.
33.
Weller
,
H. G.
,
Tabor
,
G.
,
Jasak
,
H.
, and
Fureby
,
C.
,
1998
, “
A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Techniques
,”
Comput. Phys.
,
12
(
6
), pp.
620
631
.
34.
Han
,
X.
,
Li
,
J.
, and
Morgans
,
A. S.
,
2015
, “
Prediction of Combustion Instability Limit Cycle Oscillations by Combining Flame Describing Function Simulations With a Thermoacoustic Network Model
,”
Combust. Flame
,
162
(
10
), pp.
3632
3647
.
35.
Xia
,
Y.
,
Morgans
,
A.
,
Jones
,
W.
,
Rogerson
,
J.
,
Bulat
,
G.
, and
Han
,
X.
,
2017
, “
Predicting Thermoacoustic Instability in an Industrial Gas Turbine Combustor: Combining a Low Order Network Model With Flame LES
,”
ASME
Paper No. GT2017-63247.
36.
Poinsot
,
T.
, and
Veynante
,
D.
,
2005
,
Theoretical and Numerical Combustion
,
RT Edwards
, Ann Arbor, MI.
37.
Boussinesq
,
J.
,
1877
,
Essai sur la théorie des eaux courantes
,
Imprimerie nationale
, Paris, France.
38.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow Turbul. Combust.
,
62
(
3
), pp.
183
200
.
39.
Gicquel
,
L. Y.
,
Staffelbach
,
G.
, and
Poinsot
,
T.
,
2012
, “
Large Eddy Simulations of Gaseous Flames in Gas Turbine Combustion Chambers
,”
Prog. Energy Combust. Sci.
,
38
(
6
), pp.
782
817
.
40.
Han
,
X.
, and
Morgans
,
A. S.
,
2015
, “
Simulation of the Flame Describing Function of a Turbulent Premixed Flame Using an Open-Source LES Solver
,”
Combust. Flame
,
162
(
5
), pp.
1778
1792
.
41.
Berglund
,
M.
,
Fedina
,
E.
,
Fureby
,
C.
,
Tegnér
,
J.
, and
Sabel'Nikov
,
V.
,
2010
, “
Finite Rate Chemistry Large-Eddy Simulation of Self-Ignition in a Supersonic Combustion Ramjet
,”
AIAA J.
,
48
(
3
), pp. 540–550.
42.
Fedina
,
E.
,
Fureby
,
C.
,
Bulat
,
G.
, and
Meier
,
W.
,
2017
, “
Assessment of Finite Rate Chemistry Large Eddy Simulation Combustion Models
,”
Flow Turbul. Combust.
,
99
(2), pp. 385–409.
43.
Chomiak
,
J.
, and
Karlsson
,
A.
,
1996
, “
Flame Lift–Off in Diesel Sprays
,”
Proc. Combust. Inst.
,
26
(
2
), pp.
2557
2564
.
44.
Sabelnikov
,
V.
, and
Fureby
,
C.
,
2013
, “
LES Combustion Modeling for High Re Flames Using a Multi-Phase Analogy
,”
Combust. Flame
,
160
(
1
), pp.
83
96
.
45.
Fureby
,
C.
,
Nordin-Bates
,
K.
,
Petterson
,
K.
,
Bresson
,
A.
, and
Sabelnikov
,
V.
,
2015
, “
A Computational Study of Supersonic Combustion in Strut Injector and Hypermixer Flow Fields
,”
Proc. Combust. Inst.
,
35
(
2
), pp.
2127
2135
.
46.
Sweby
,
P. K.
,
1984
, “
High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws
,”
SIAM J. Numer. Anal.
,
21
(
5
), pp.
995
1011
.
47.
Abou-Taouk
,
A.
,
Farcy
,
B.
,
Domingo
,
P.
,
Vervisch
,
L.
,
Sadasivuni
,
S.
, and
Eriksson
,
L.-E.
,
2016
, “
Optimized Reduced Chemistry and Molecular Transport for Large Eddy Simulation of Partially Premixed Combustion in a Gas Turbine
,”
Combust. Sci. Technol.
,
188
(
1
), pp.
21
39
.
48.
Cabral
,
B.
, and
Leedom
,
L. C.
,
1993
, “
Imaging Vector Fields Using Line Integral Convolution
,”
20th Annual Conference on Computer Graphics and Interactive Techniques
, Anaheim, CA, Aug. 2–6, pp.
263
270
.
49.
Sartor
,
F.
,
Mettot
,
C.
,
Bur
,
R.
, and
Sipp
,
D.
,
2015
, “
Unsteadiness in Transonic Shock-Wave/Boundary-Layer Interactions: Experimental Investigation and Global Stability Analysis
,”
J. Fluid Mech.
,
781
, pp.
550
577
.
50.
Lee, C. Y.
, and
Cant, S.
, 2017, “
Assessment of LES Subgrid-Scale Models and Investigation of Hydrodynamic Behaviour for an Axisymmetrical Bluff Body Flow
,”
Flow Turbul. Combust.
,
98
(1), pp. 155–176.
You do not currently have access to this content.