A numerical second law analysis is performed to determine the entropy production due to irreversibilities in condensing steam flows. In the present work, the classical approach to calculate entropy production rates in turbulent flows based on velocity and temperature gradients is extended to two-phase condensing flows modeled within an Eulerian–Eulerian framework. This requires some modifications of the general approach and the inclusion of additional models to account for thermodynamic and kinematic relaxation processes. With this approach, the entropy production within each mesh element is obtained. In addition to the quantification of thermodynamic and kinematic wetness losses, a breakdown of aerodynamic losses is possible to allow for a detailed loss analysis. The aerodynamic losses are classified into wake mixing, boundary layer, and shock losses. The application of the method is demonstrated by means of the flow through a well-known steam turbine cascade test case. Predicted variations of loss coefficients for different operating conditions can be confirmed by experimental observations. For the investigated test cases, the thermodynamic relaxation contributes the most to the total losses and the losses due to droplet inertia are only of minor importance. The variation of the predicted aerodynamic losses for different operating conditions is as expected and demonstrates the suitability of the approach.

References

References
1.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
2.
Bejan
,
A.
,
1996
,
Entropy Generation Minimization
,
CRC Press
, Boca Raton, FL.
3.
Grübel
,
M.
,
Dovik
,
R. M.
,
Schatz
,
M.
, and
Vogt
,
D. M.
,
2017
, “
A Methodology for a Detailed Loss Prediction in Low Pressure Steam Turbines
,”
ASME
Paper No. GT2017-63404.
4.
Kock
,
F.
, and
Herwig
,
H.
,
2005
, “
Entropy Production Calculation for Turbulent Shear Flows and Their Implementation in CFD Codes
,”
Int. J. Heat Fluid Flow
,
26
(
4
), pp.
672
680
.
5.
Iandoli
,
C. L.
,
Sciubba
,
E.
, and
Zeoli
,
N.
,
2008
, “
The Computation of the Entropy Generation Rate for Turbomachinery Design Applications: Some Theoretical Remarks and Practical Examples
,”
Int. J. Energy Technol. Policy
,
6
(
1/2
), pp.
64
95
.
6.
Sciubba
,
E.
,
2009
, “
Some Remarks About the Computation of the Entropy Generation Rate in Turbomachinery
,”
Int. J. Trans. Phen.
,
11
(
1
), pp.
79
96
.http://www.oldcitypublishing.com/journals/ijtp-home/ijtp-issue-contents/ijtp-volume-11-number-1-2009-10/ijtp-11-1-p-79-96/
7.
Zlatinov
,
M. B.
,
Tan
,
C. S.
,
Montgomery
,
M.
,
Islam
,
T.
, and
Harris
,
M.
,
2012
, “
Turbine Hub and Shroud Sealing Flow Loss Mechanisms
,”
ASME J. Turbomach.
,
134
(
6
), p.
061027
.
8.
Palenschat
,
T.
,
Newton
,
P.
,
Martinez-Botas
,
R. F.
,
Müller
,
M.
, and
Leweux
,
J.
,
2017
, “
3-D Computational Loss Analysis of an Asymmetric Volute Twin-Scroll Turbocharger
,”
ASME
Paper No. GT2017-64190.
9.
Young
,
J. B.
,
1995
, “
The Fundamental Equations of Gas-Droplet Multiphase Flow
,”
Int. J. Multiphase Flow
,
21
(
2
), pp.
175
191
.
10.
Starzmann
,
J.
,
Casey
,
M.
,
Mayer
,
J. F.
, and
Sieverding
,
F.
,
2014
, “
Wetness Loss Prediction for a Low Pressure Steam Turbine Using CFD
,”
Proc. Inst. Mech. Eng., Part A
,
228
(
2
), pp.
216
231
.
11.
Gerber
,
A. G.
,
2008
, “
Inhomogeneous Multifluid Model for Prediction of Nonequilibrium Phase Transition and Droplet Dynamics
,”
ASME J. Fluids Eng.
,
130
(
3
), p. 031402.
12.
Wagner
,
W.
,
Cooper
,
J. R.
,
Dittmann
,
A.
,
Kijima
,
J.
,
Kretzschmar
,
H. J.
,
Kruse
,
A.
,
Mares
,
R.
,
Oguchi
,
K.
,
Sato
,
H.
,
Stöcker
,
I.
,
Sifner
,
O.
,
Takaishi
,
Y.
,
Tanishita
,
I.
,
Trübenbach
,
J.
, and
Willkommen
,
T.
,
2000
, “
The IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam
,”
ASME J. Eng. Gas Turbines Power
,
122
(
1
), pp.
150
182
.
13.
Bakhtar
,
F.
,
Young
,
J. B.
,
White
,
A. J.
, and
Simpson
,
D. A.
,
2005
, “
Classical Nucleation Theory and Its Application to Condensing Steam Flow Calculations
,”
Proc. Inst. Mech. Eng., Part C
,
219
(
12
), pp.
1315
1333
.
14.
Grübel
,
M.
,
Starzmann
,
J.
,
Schatz
,
M.
, and
Vogt
,
D. M.
,
2017
, “
Modelling of Condensing Steam Flows in Laval Nozzles With ANSYS CFX
,”
Proc. Inst. Mech. Eng., Part A
(epub).
15.
Young
,
J. B.
,
1982
, “
The Spontaneous Condensation of Steam in Supersonic Nozzles
,”
Physicochem. Hydrodyn.
,
3
(
1
), pp.
57
82
.
16.
White
,
A. J.
,
1992
, “
Condensation in Steam Turbine Cascades
,” Ph.D. thesis, University of Cambridge, Cambridge, UK.
17.
Starzmann
,
J.
,
Hughes
,
F. R.
,
White
,
A. J.
,
Halama
,
J.
,
Hric
,
V.
,
Kolovratnik
,
M.
,
Lee
,
H.
,
Sova
,
L.
,
Stastny
,
M.
,
Schuster
,
S.
,
Grübel
,
M.
,
Schatz
,
M.
,
Vogt
,
D. M.
,
Patel
,
Y.
,
Patel
,
G.
,
Turunen-Saaresti
,
T.
,
Gribin
,
V.
,
Tishchenko
,
V.
,
Gavrilov
,
I.
,
Kim
,
C.
,
Baek
,
J.
,
Wu
,
X.
,
Yang
,
J.
,
Dykas
,
S.
,
Wroblewski
,
W.
,
Yamamoto
,
S.
,
Feng
,
Z.
, and
Li
,
L.
,
2016
, “
Results of the International Wet Steam Modelling Project
,”
Wet Steam Conference
, Prague, Czech Republic, Sept. 12–14, Paper No. 11.
18.
Starzmann
,
J.
,
2014
, “
Numerische Untersuchung der Zweiphasenströmung und Analyse von Nässeverlusten in Niederdruckdampfturbinen
,” Ph.D. thesis, University of Stuttgart, Stuttgart, Germany (in German).
19.
Grübel
,
M.
,
Starzmann
,
J.
,
Schatz
,
M.
,
Eberle
,
T.
,
Vogt
,
D. M.
, and
Sieverding
,
F.
,
2015
, “
Two-Phase Flow Modeling and Measurements in Low-Pressure Turbines—Part 1: Numerical Validation of Wet Steam Models and Turbine Modeling
,”
ASME J. Eng. Gas Turbines Power
,
137
(
4
), p.
042602
.
20.
Gyarmathy
,
G.
,
1962
, “
Grundlagen einer Theorie der Naßdampfturbine
,” Ph.D. thesis, ETH Zürich, Juris-Verlag Zürich, Switzerland (in German).
21.
Herwig
,
H.
, and
Schmandt
,
B.
,
2014
, “
How to Determine Losses in a Flow Field: A Paradigm Shift Towards the Second Law Analysis
,”
Entropy
,
16
(
6
), pp.
2959
2989
.
22.
Naterer
,
G. F.
,
2003
,
Heat Transfer in Single and Multiphase Systems
,
CRC Press
, Boca Raton, FL.
23.
Sun
,
J.
,
2014
, “
Two-Phase Eulerian Averaged Formulation of Entropy Production for Cavitation Flow
,”
Ph.D. thesis
, University of Manitoba, Winnipeg, MB, Canada.https://mspace.lib.umanitoba.ca/handle/1993/23987
24.
Vreman
,
A. W.
,
2007
, “
Macroscopic Theory of Multicomponent Flows: Irreversibility and Well-Posed Equations
,”
Physica D
,
225
(
1
), pp.
94
111
.
25.
Crowe
,
C.
,
Sommerfeld
,
M.
, and
Tsuji
,
Y.
,
1998
,
Multiphase Flows With Droplets and Particles
,
CRC Press
, Boca Raton, FL.
26.
Schiller
,
L.
, and
Naumann
,
A.
,
1933
, “
Über die grundlegenden Berechnungen bei der Schwerkraftaufbereitung
,”
Z. Ver. Dtsch. Ing.
,
77
(12), pp.
318
320
.
27.
Herwig
,
H.
, and
Wenterodt
,
T.
,
2012
,
Entropie für Ingenieure
,
Vieweg+Teubner
, Wiesbaden, Germany (in German).
28.
White
,
A. J.
,
Young
,
J. B.
, and
Walters
,
P. T.
,
1996
, “
Experimental Validation of Condensing Flow Theory for a Stationary Cascade of Steam Turbine Blades
,”
Philos. Trans. R. Soc. A
,
354
(
1704
), pp.
59
88
.
29.
ANSYS
,
2017
, “
ANSYS CFX-Solver Theory Guide, Release 18.0
,” Ansys, Inc., Canonsburg, PA.
You do not currently have access to this content.