This work describes a methodology used for counter-rotating (CR) propellers performance estimation. The method is implemented in an in-house program for gas turbine performance prediction, making possible the simulation of the counter-rotating open rotor (CROR) architecture. The methodology is used together with a variable geometry compressor control strategy to avoid surge conditions. Two cases are simulated under transient operation for both fixed and variable geometry compressor. The influence of the variable geometry control on the transient performance of CROR engines is evaluated and a comprehensive understanding on the transient behavior of this type of engine could be obtained. It is shown that the use of the variable geometry compressor control does not significantly affect the overall engine performance, while avoiding the surge conditions, thus ensuring the engine operation safety.

References

References
1.
European Commission
,
2011
, “
Flightpath 2050—Europe's Vision for Aviation
,”
European Commission
, Luxembourg, Luxembourg.
2.
Del Rosario
,
R.
,
Follen
,
G.
,
Wahls
,
R.
, and
Madavan
,
N.
,
2012
, “
Subsonic Fixed Wing Project Overview of Technical Challenges for Energy Efficient, Environmentally Compatible Subsonic Transport Aircraft
,”
50th AIAA Aerospace Science Meeting
, Nashville, TN, Jan. 9–12, pp.
9
12
.
3.
Negulescu
,
C. A.
,
2013
, “
Airbus AI-PX7 CROR Design Features and Aerodynamics
,”
SAE Int. J. Aerosp.
,
6
(
2
), pp.
626
642
.
4.
Hager
,
D.
, and
Vrabel
,
D.
,
1988
, “
Advanced Turboprop Project
,” National Aeronautics and Space Administration, Cleveland, OH, Report No. NASA SP-495.
5.
Van Zante
,
D.
,
2015
, “
Progress in Open Rotor Research: A U.S. Perspective
,”
ASME
Paper No. GT2015-42203.
6.
Biermann
,
D.
, and
Gray
,
W. H.
,
1942
, “
Wind-Tunnel Tests of Single- and Dual-Rotating Pusher Propellers Having From Three to Eight Blades
,” National Advisory Committee for Aeronautics, Langley, VA, Report No. NACA-WR-L-359.
7.
Mikkelson
,
D. C.
,
Mitchell
,
G. A.
, and
Bober
,
L. J.
,
1984
, “
Summary of Recent NASA Propeller Research
,” National Aeronautics and Space Administration, Cleveland, OH, Report No.
NASA-TM-83733
.https://ntrs.nasa.gov/search.jsp?R=19840024274
8.
GE Aircraft Engines
,
1987
, “
Full Scale Technology Demonstration of a Modern Counterrotating Unducted Fan Engine Concept: Design Report
,” National Aeronautics and Space Administration, Cleveland, OH, Report No.
NASA CR-180867
.https://ntrs.nasa.gov/search.jsp?R=19900000732
9.
Mitchell
,
G. A.
,
1988
, “
Experimental Aerodynamic Performance of Advanced 40 Deg-Swept 10-Blade Propeller Model at Mach 0.6 to 0.85
,” National Aeronautics and Space Administration, Cleveland, OH, Report No.
NASA TM-88969
.https://ntrs.nasa.gov/search.jsp?R=19890001494
10.
Hughes
,
C.
, and
Gazzaniga
,
J.
,
1988
, “
Summary of Low-Speed Wind Tunnel Results of Several High-Speed Counterrotation Propeller Configurations
,”
AIAA
Paper No. 88-3149.
11.
Sullivan
,
T. J.
,
1986
, “
Aerodynamic Performance of a Scale-Model, Counter Rotating Unducted Fan
,”
ASME J. Turbomach.
,
112
(
4
), pp.
579
586
.
12.
Hoff
,
G. E.
,
1990
, “
Experimental Performance and Acoustic Investigation of Modern, Counterrotating Blade Concepts
,” National Aeronautics and Space Administration, Cincinnati, OH, Report No.
NASA-CR-185158
.https://ntrs.nasa.gov/search.jsp?R=19900014077
13.
Hamilton Standard
,
1963
, “
Generalized Method for Propeller Performance Estimation
,”
Hamilton Standard
, Windsor Locks, CT, Standard No. PDB 6101.
14.
Wainauski
,
H. S.
,
Rohrbach
,
C.
, and
Wynosky
,
T.
,
1987
, “
Prop-Fan Performance Terminology
,”
Aerospace Technology Conference and Exposition
, Long Beach, CA, pp.
1
12
.
15.
Worobel
,
R.
, and
Mayo
,
M.
,
1971
, “
Advanced General Aviation Propeller Study
,” National Aeronautics and Space Administration, Windsor Locks, CT, Report No.
NASA-CR-114399
.https://ntrs.nasa.gov/search.jsp?R=19720010354
16.
Von Miss
,
R.
,
1959
,
Theory of Flight
,
Dover Publications
,
Mineola, NY
.
17.
Farokhi
,
S.
,
2014
,
Aircraft Propulsion
,
2nd ed.
,
Wiley
, Chichester, UK.
18.
Lan
,
C. T.
, and
Roskam
,
J.
,
1997
,
Airplane Aerodynamics and Performance
,
DAR Corporation
,
Lawrence, KA
.
19.
Hendricks
,
E. S.
,
2011
, “
Development of an Open Rotor Cycle Model in NPSS Using a Multi-Design Point Approach
,”
ASME
Paper No. GT2011-46694.
20.
Hendricks
,
E.
, and
Tong
,
M.
,
2012
, “
Performance and Weight Estimates for an Advanced Open Rotor Engine
,”
AIAA
Paper No. 2012-3911.
21.
Bellocq
,
P.
,
Sethi
,
V.
,
Cerasi
,
L.
,
Ahlefelder
,
S.
,
Singh
,
R.
, and
Tantot
,
N.
,
2010
, “
Advanced Open Rotor Performance Modelling for Multidisciplinary Optimization Assessments
,”
ASME
Paper No. GT2010-22963.
22.
Bellocq
,
P.
,
2012
, “
Multi-Disciplinary Preliminary Design Assessments of Pusher Counter-Rotating Open Rotors for Civil Aviation
,”
Ph.D. thesis
, School of Engineering, Cranfield University, Bedford, UK.https://dspace.lib.cranfield.ac.uk/handle/1826/10280
23.
Bellocq
,
P.
,
Sethi
,
V.
,
Capodanno
,
S.
,
Patin
,
A. A.
, and
Lucas
,
F. R.
,
2014
, “
Advanced 0-D Performance Modelling of Counter Rotating Propellers for Multi-Disciplinary Preliminary Design Assessments of Open Rotors
,”
ASME
Paper No. GT2014-27141.
24.
Bellocq
,
P.
,
Garmendia
,
I.
,
Sethi
,
V.
,
Patin
,
A.
,
Capodanno
,
S.
, and
Lucas
,
F. R.
,
2016
, “
Multidisciplinary Assessment of the Control of the Propellers of a Pusher Geared Open Rotor-Part I: Zero-Dimensional Performance Model for Counter-Rotating Propellers
,”
ASME J. Eng. Gas Turbines Power
,
138
(
7
), p. 072602.
25.
Bellocq
,
P.
,
Garmendia
,
I.
,
Sethi
,
V.
,
Patin
,
A.
,
Capodanno
,
S.
, and
Lucas
,
F. R.
,
2016
, “
Multidisciplinary Assessment of the Control of the Propellers of a Pusher Geared Open Rotor—Part II: Impact on Fuel Consumption, Engine Weight, Certification Noise, and NOx Emissions
,”
ASME J. Eng. Gas Turbines Power
,
138
(
7
), p. 072603.
26.
Alexiou
,
A.
,
Frantzis
,
C.
,
Aretakis
,
N.
,
Riziotis
,
V.
,
Roumeliotis
,
I.
, and
Mathioudakis
,
K.
,
2016
, “
Contra-Rotating Propeller Modelling for Open Rotor Engine Performance Simulations
,”
ASME
Paper No. GT2016-56645.
27.
Perullo
,
C.
,
Tai
,
J.
, and
Mavris
,
D.
,
2013
, “
Effects of Advanced Engine Technology on Open Rotor Cycle Selection and Performance
,”
ASME J. Eng. Gas Turbines Power
,
135
(
7
), p. 071204.
28.
Larsson
,
L.
,
Lundbladh
,
A.
, and
Grönstedt
,
T.
,
2013
, “
Effects of Different Propeller Models on Open Rotor Fuel Consumption
,” International Society for Air Breathing Engines, Busan, South Korea, Sept. 9–13, Paper No.
ISABE-2013-1712
.http://publications.lib.chalmers.se/records/fulltext/185128/local_185128.pdf
29.
Dubosc
,
M.
,
Tantot
,
N.
,
Beaumier
,
P.
, and
Delattre
,
G.
,
2014
, “
A Method for Predicting Contra Rotating Propellers Off-Design Performance
,”
ASME
Paper No. GT2014-25057.
30.
Tantot
,
N.
,
Brichler
,
T.
,
Dubosc
,
M.
, and
Ghebali
,
S.
,
2015
, “
Innovative Approaches to Propellers Off-Design Performance Modeling
,”
ASME
Paper No. GT2015-42145.
31.
Giannakakis
,
P.
,
Laskaridis
,
P.
,
Nikolaidis
,
T.
, and
Kalfas
,
A.
,
2015
, “
Toward a Scalable Propeller Map
,”
J. Propul. Power
,
31
(
4
), pp.
1073
1082
.
32.
Giannakakis
,
P.
,
Goulos
,
I.
,
Laskaridis
,
P.
,
Pilidis
,
P.
, and
Kalfas
,
A.
,
2016
, “
Novel Propeller Map Scaling Method
,”
J. Propul. Power
,
32
(
6
), pp.
1325
1332
.
33.
Crainic
,
C.
,
Harvey
,
R.
, and
Thompson
,
A.
,
1997
, “
Real Time Thermodynamic Transient Model for Three Spool Turboprop Engine
,”
ASME
Paper No. 97-GT-223.
34.
Kim
,
J. H.
,
Song
,
T. W.
,
Kim
,
T. S.
, and
Ro
,
S. T.
,
2000
, “
Model Development and Simulation of Transient Behavior of Heavy Duty Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
123
(
3
), pp.
589
594
.
35.
Korakianitis
,
T. T.
,
Hochstein
,
J. I.
, and
Zou
,
D. D.
,
2005
, “
Prediction of the Transient Thermodynamic Response of a Closed-Cycle Regenerative Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
,
127
(
1
), pp.
57
64
.
36.
Kyprianidis
,
K.
, and
Kalfas
,
A.
,
2008
, “
Dynamic Performance Investigations of a Turbojet Engine Using a Cross-Application Visual Oriented Platform
,”
Aeronaut. J.
,
112
(
1129
), pp.
161
169
.
37.
Rahman
,
N. U.
, and
Whidborne
,
J. F.
,
2008
, “
Real-Time Transient Three Spool Turbofan Engine Simulation: A Hybrid Approach
,”
ASME J. Eng. Gas Turbines Power
,
131
(
5
), p. 051602.
38.
Asgari
,
H.
,
Venturini
,
M.
,
Chen
,
X.
, and
Sainudiin
,
R.
,
2014
, “
Modeling and Simulation of the Transient Behavior of an Industrial Power Plant Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
,
136
(
6
), p. 061601.
39.
Tsoutsanis
,
E.
,
Meskin
,
N.
,
Benammar
,
M.
, and
Khorasani
,
K.
,
2015
, “
Transient Gas Turbine Performance Diagnostics Through Nonlinear Adaptation of Compressor and Turbine Maps
,”
ASME J. Eng. Gas Turbines Power
,
137
(
9
), p. 091201.
40.
Saravanamuttoo
,
H. I. H.
,
Rogers
,
G. F. C.
, and
Cohen
,
H.
,
2009
,
Gas Turbine Theory
,
6th ed.
,
Prentice Hall
,
Harlow, UK
.
41.
Razak
,
A. M. Y.
,
2007
,
Industrial Gas Turbine. Performance and Operability
,
CRC Press LLC
,
Cambridge, UK
.
42.
Fletcher
,
P.
, and
Walsh
,
P. P.
,
2004
,
Gas Turbine Performance
,
2nd ed.
,
Blackwell
,
Oxford, UK
.
43.
Moir
,
I.
, and
Seabridge
,
A.
,
2008
,
Aircraft Systems Mechanical, Electrical, and Avionics Subsystems Integration
,
3rd ed.
,
Wiley
,
Chichester, UK
.
44.
Alström
,
K.
, and
Hägglund
,
T.
,
1995
,
PID Controllers: Theory, Design and Tuning
,
2nd ed.
,
Instrument Society of America Research
, Durham, NC.
45.
Bringhenti
,
C.
,
2003
, “
Variable Geometry Gas Turbine Performance Analysis
,” Ph.D. thesis, Aerodynamics, Propulsion and Energy, Aeronautics Institute of Technology, São José dos Campos, SP, Brazil.
46.
Silva
,
V. T.
,
Bringhenti
,
C.
,
Tomita
,
J. T.
, and
Fontes
,
A. F.
, “
A Propeller Model for Steady-State and Transient Performance Prediction of Turboprop and Counter-Rotating Open Rotor Engines
,”
ASME J. Eng. Gas Turbines Power
,
140
(7), p. 071201.
47.
Bringhenti
,
C.
, and
Barbosa
,
J. R.
,
2004
, “
Methodology for Gas Turbine Performance Improvement Using Variable-Geometry Compressors and Turbines
,”
Proc. Inst. Mech. Eng., Part A
,
218
(
7
), pp.
541
549
.
48.
Barbosa
,
J. R.
,
Jefferds
,
F. S. S.
,
Tomita
,
J. T.
, and
Bringhenti
,
C.
,
2011
, “
Gas Turbine Transients With Controlled Variable Geometry
,”
ASME
Paper No. GT2012-69836.
49.
Barbosa
,
J. R.
,
Bringhenti
,
C.
, and
Tomita
,
J. T.
,
2014
, “
A Step Further on the Control of Acceleration of Gas Turbines With Controlled Variable Geometry and Combustion Emissions
,”
ASME
Paper No. GT2014-26409.
You do not currently have access to this content.