Homogeneous charge compression ignition (HCCI) combustion has the potential for high efficiency with very low levels of NOx and soot emissions. However, HCCI has thus far only been achievable in a laboratory setting due the lack of control over the start and rate of combustion and its narrow operating range. In the present work, direct water injection (WI) was investigated to solve the aforementioned limitations of HCCI. This new advanced combustion mode is called thermally stratified compression ignition (TSCI). A three-dimensional computational fluid dynamics (3D CFD) model was developed using CONVERGE CFD coupled with detailed chemical kinetics to gain a better understanding of the underlying phenomena of the water injection event in a homogeneous, low temperature combustion (LTC) strategy. The CFD model was first validated against previously collected experimental data. The model was then used to simulate TSCI combustion and the results indicate that injecting water into the combustion chamber decreases the overall unburned gas temperature and increases the level of thermal stratification prior to ignition. The increased thermal stratification results in a decreased rate of combustion, thereby providing control over its rate. The results show that the peak pressure and gross heat release rate (HRR) decrease by 37.8% and 83.2%, respectively, when 6.7 mg of water were injected per cycle at a pressure of 160 bar. Finally, different spray patterns were simulated to observe their effect on the level of thermal stratification prior to ignition. The results show that the symmetric patterns with more nozzle holes were generally more effective at increasing thermal stratification.

References

References
1.
DOE,
2015
, “
Quadrennial Technology Review 2015
,” U.S. Department of Energy, Washington, DC.
2.
Yao
,
M.
,
Chen
,
Z.
,
Zheng
,
Z.
,
Zhang
,
B.
, and
Xing
,
Y.
,
2006
, “
Study on the Controlling Strategies of Homogeneous Charge Compression Ignition Combustion With Fuel of Dimethyl Ether and Methanol
,”
Fuel
,
85
(
14–15
), pp.
2046
2056
.
3.
Yao
,
M.
,
Zheng
,
Z.
, and
Liu
,
H.
,
2009
, “
Progress and Recent Trends in Homogeneous Charge Compression Ignition (HCCI) Engines
,”
Prog. Energy Combust. Sci.
,
35
(
5
), pp.
398
437
.
4.
Yao
,
M.
,
Zhang
,
B.
,
Zheng
,
Z.
,
Chen
,
Z.
, and
Xing
,
Y.
,
2007
, “
Effects of Exhaust Gas Recirculation on Combustion and Emissions of a Homogeneous Charge Compression Ignition Engine Fuelled With Primary Reference Fuels
,”
Proc. Inst. Mech. Eng., Part D
,
221
(
2
), pp.
197
213
.
5.
Yap
,
D.
,
Wyszynski
,
M.
,
Megaritis
,
A.
, and
Xu
,
H.
,
2005
, “
Applying Boosting to Gasoline HCCI Operation With Residual Gas Trapping
,”
SAE
Paper No. 0148-7191.
6.
Cairns
,
A.
, and
Blaxill
,
H.
,
2005
, “
The Effects of Combined Internal and External Exhaust Gas Recirculation on Gasoline Controlled Auto-Ignition
,”
SAE
Paper No. 0148-7191.
7.
Hyvönen
,
J.
,
Haraldsson
,
G.
, and
Johansson
,
B.
,
2003
, “
Operating Range in a Multi Cylinder HCCI Engine Using Variable Compression Ratio
,”
SAE
Paper No. 0148-7191.
8.
Aroonsrisopon
,
T.
,
Werner
,
P.
,
Waldman
,
J. O.
,
Sohm
,
V.
,
Foster
,
D. E.
,
Morikawa
,
T.
, and
Iida
,
M.
,
2004
, “
Expanding the HCCI Operation With the Charge Stratification
,”
SAE
Paper No. 0148-7191.
9.
Berntsson
,
A. W.
, and
Denbratt
,
I.
,
2007
, “
HCCI Combustion Using Charge Stratification for Combustion Control
,”
SAE
Paper No. 0148-7191.
10.
Aoyama
,
T.
,
Hattori
,
Y.
,
Mizuta
,
J. I.
, and
Sato
,
Y.
,
1996
, “
An Experimental Study on Premixed-Charge Compression Ignition Gasoline Engine
,”
SAE
Paper No. 0148-7191.
11.
Flynn
,
P. F.
,
Hunter
,
G. L.
,
Zur Loye
,
A. O.
,
Akinyemi
,
O. C.
,
Durrett
,
R. P.
,
Moore
,
G. A.
,
Muntean
,
G. G.
,
Peters
,
L. L.
,
Pierz
,
P. M.
, and
Wagner
,
J. A.
,
2001
, “
Premixed Charge Compression Ignition Engine With Optimal Combustion Control
,” Cummins Inc., Columbus, IN, U.S. Patent No.
US6276334B1
.https://patents.google.com/patent/US6276334B1/en
12.
Tsolakis
,
A.
, and
Megaritis
,
A.
,
2005
, “
Partially Premixed Charge Compression Ignition Engine With on-Board H2 Production By Exhaust Gas Fuel Reforming of Diesel and Biodiesel
,”
Int. J. Hydrogen Energy
,
30
(
7
), pp.
731
745
.
13.
Kodavasal
,
J.
,
Kolodziej
,
C.
,
Ciatti
,
S.
, and
Som
,
S.
, “
CFD Simulation of Gasoline Compression Ignition
,”
ASME
Paper No. ICEF2014-5591.
14.
Kodavasal
,
J.
,
Kolodziej
,
C. P.
,
Ciatti
,
S. A.
, and
Som
,
S.
,
2015
, “
Computational Fluid Dynamics Simulation of Gasoline Compression Ignition
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
032212
.
15.
Kolodziej
,
C.
,
Kodavasal
,
J.
,
Ciatti
,
S.
,
Som
,
S.
,
Shidore
,
N.
, and
Delhom
,
J.
,
2015
, “
Achieving Stable Engine Operation of Gasoline Compression Ignition Using 87 AKI Gasoline Down to Idle
,”
SAE
Paper No. 0148-7191.
16.
Sellnau
,
M.
,
Sinnamon
,
J.
,
Hoyer
,
K.
, and
Husted
,
H.
,
2011
, “
Gasoline Direct Injection Compression Ignition (GDCI)-Diesel-like Efficiency With Low CO2 Emissions
,”
SAE Int. J. Engines
,
4
(
1
), pp.
2010
2022
.
17.
Yang
,
Y.
,
Dec
,
J. E.
,
Dronniou
,
N.
,
Sjöberg
,
M.
, and
Cannella
,
W.
,
2011
, “
Partial Fuel Stratification to Control HCCI Heat Release Rates: Fuel Composition and Other Factors Affecting Pre-Ignition Reactions of Two-Stage Ignition Fuels
,”
SAE Int. J. Engines
,
4
(
1
), pp.
1903
1920
.
18.
Kokjohn
,
S.
,
Hanson
,
R.
,
Splitter
,
D.
,
Kaddatz
,
J.
, and
Reitz
,
R. D.
,
2011
, “
Fuel Reactivity Controlled Compression Ignition (RCCI) Combustion in Light-and Heavy-Duty Engines
,”
SAE Int. J. Engines
,
4
(
1
), pp.
360
374
.
19.
Kokjohn
,
S.
,
Hanson
,
R.
,
Splitter
,
D.
, and
Reitz
,
R.
,
2011
, “
Fuel Reactivity Controlled Compression Ignition (RCCI): A Pathway to Controlled High-Efficiency Clean Combustion
,”
Int. J. Engine Res.
,
12
(
3
), pp.
209
226
.
20.
Splitter
,
D.
,
Hanson
,
R.
,
Kokjohn
,
S.
, and
Reitz
,
R. D.
,
2011
, “
Reactivity Controlled Compression Ignition (RCCI) Heavy-Duty Engine Operation at Mid-and High-Loads With Conventional and Alternative Fuels
,”
SAE
Paper No. 0148-7191.
21.
Lawler
,
B.
,
Splitter
,
D.
,
Szybist
,
J.
, and
Kaul
,
B.
,
2017
, “
Thermally Stratified Compression Ignition: A New Advanced Low Temperature Combustion Mode With Load Flexibility
,”
Appl. Energy
,
189
, pp.
122
132
.
22.
Bedford
,
F.
,
Rutland
,
C.
,
Dittrich
,
P.
,
Raab
,
A.
, and
Wirbeleit
,
F.
,
2000
, “
Effects of Direct Water Injection on DI Diesel Engine Combustion
,”
SAE
Paper No. 0148-7191.
23.
Brusca
,
S.
, and
Lanzafame
,
R.
,
2001
, “
Evaluation of the Effects of Water Injection in a Single Cylinder CFR Cetane Engine
,”
SAE
Paper No. 0148-7191.
24.
Dickey
,
D. W.
,
Ryan
,
T. W.
, and
Matheaus
,
A. C.
,
1998
, “
NOx Control in Heavy-Duty Diesel Engines-What is the Limit?
,”
SAE
Paper No. 0148-7191.
25.
Hountalas
,
D. T.
,
Mavropoulos
,
G.
, and
Zannis
,
T.
,
2007
, “
Comparative Evaluation of EGR, Intake Water Injection and Fuel/Water Emulsion as NOx Reduction Techniques for Heavy Duty Diesel Engines
,”
SAE
Paper No. 0148-7191.
26.
Hountalas
,
D. T.
,
Mavropoulos
,
G. C.
,
Zannis
,
T.
, and
Mamalis
,
S.
,
2006
, “
Use of Water Emulsion and Intake Water Injection as NOx Reduction Techniques for Heavy Duty Diesel Engines
,”
SAE
Paper No. 0148-7191.
27.
Nishijima
,
Y.
,
Asaumi
,
Y.
, and
Aoyagi
,
Y.
,
2002
, “
Impingement Spray System With Direct Water Injection for Premixed Lean Diesel Combustion Control
,”
SAE
Paper No. 0148-7191.
28.
Psota
,
M.
,
Easley
,
W.
,
Fort
,
T.
, and
Mellor
,
A.
,
1997
, “
Water Injection Effects on NOx Emissions for Engines Utilizing Diffusion Flame Combustion
,”
SAE
Paper No. 0148-7191.
29.
Brusca
,
S.
, and
Lanzafame
,
R.
,
2003
, “
Water Injection in IC–SI Engines to Control Detonation and to Reduce Pollutant Emissions
,”
SAE
Paper No. 0148-7191.
30.
Nicholls
,
J.
,
Ei-Messiri
,
I.
, and
Newhali
,
H.
,
1969
, “
Inlet Manifold Water Injection for Control of Nitrogen Oxides—Theory and Experiment
,”
SAE
Paper No. 0148-7191.
31.
Christensen
,
M.
, and
Johansson
,
B.
,
1999
, “
Homogeneous Charge Compression Ignition With Water Injection
,”
SAE
Paper No. 0148-7191.
32.
Iwashiro
,
Y.
,
Tsurushima
,
T.
,
Nishijima
,
Y.
,
Asaumi
,
Y.
, and
Aoyagi
,
Y.
,
2002
, “
Fuel Consumption Improvement and Operation Range Expansion in HCCI by Direct Water Injection
,”
SAE
Paper No. 0148-7191.
33.
Kaneko
,
N.
,
Ando
,
H.
,
Ogawa
,
H.
, and
Miyamoto
,
N.
,
2002
, “
Expansion of the Operating Range With In-Cylinder Water Injection in a Premixed Charge Compression Ignition Engine
,”
SAE
Paper No. 0148-7191.
34.
Steinhilber
,
T.
, and
Sattelmayer
,
T.
,
2006
, “
The Effect of Water Addition on HCCI Diesel Combustion
,”
SAE
Paper No. 0148-7191.
35.
Richards
,
K.
,
Senecal
,
P.
, and
Pomraning
,
E.
,
2014
, “
Converge (v2. 2.0)
,”
Theory Manual
,
Convergent Science
,
Madison, WI
.
36.
Liu
,
Y.-D.
,
Jia
,
M.
,
Xie
,
M.-Z.
, and
Pang
,
B.
,
2012
, “
Enhancement on a Skeletal Kinetic Model for Primary Reference Fuel Oxidation by Using a Semidecoupling Methodology
,”
Energy Fuels
,
26
(
12
), pp.
7069
7083
.
37.
Amsden
,
A.
,
1997
,
KIVA3V. A Block-Structured KIVA Program for Engines With Vertical or Canted Valves
,
Los Alamos National Laboratory
,
Los Alamos, NM
.
38.
Han
,
Z.
, and
Reitz
,
R. D.
,
1995
, “
Turbulence Modeling of Internal Combustion Engines Using RNG κ-ε Models
,”
Combust. Sci. Technol.
,
106
(
4–6
), pp.
267
295
.
39.
Yakhot
,
V.
, and
Orszag
,
S. A.
,
1986
, “
Renormalization Group Analysis of Turbulence. I. Basic Theory
,”
J. Sci. Comput.
,
1
(
1
), pp.
3
51
.
40.
Beale
,
J. C.
, and
Reitz
,
R. D.
,
1999
, “
Modeling Spray Atomization With the Kelvin-Helmholtz/Rayleigh-Taylor Hybrid Model
,”
Atomization Sprays
,
9
(
6
), pp.
623
650
.
41.
Reitz
,
R. D.
, and
Bracco
,
F.
,
1986
, “
Mechanisms of Breakup of Round Liquid Jets
,”
Encycl. Fluid Mech.
,
3
, pp.
233
249
.
42.
Su
,
T.
,
Patterson
,
M.
,
Reitz
,
R. D.
, and
Farrell
,
P.
,
1996
, “
Experimental and Numerical Studies of High Pressure Multiple Injection Sprays
,”
SAE
Paper No. 0148-7191.
43.
Liu
,
A. B.
,
Mather
,
D.
, and
Reitz
,
R. D.
,
1993
, “
Modeling the Effects of Drop Drag and Breakup on Fuel Sprays
,” DTIC Document, Report No.
AD-A-263650/4/XAB
.
44.
Schmidt
,
D. P.
, and
Rutland
,
C.
,
2000
, “
A New Droplet Collision Algorithm
,”
J. Comput. Phys.
,
164
(
1
), pp.
62
80
.
45.
Chiang
,
C.
,
Raju
,
M.
, and
Sirignano
,
W.
,
1992
, “
Numerical Analysis of Convecting, Vaporizing Fuel Droplet With Variable Properties
,”
Int. J. Heat Mass Transfer
,
35
(
5
), pp.
1307
1324
.
46.
Senecal
,
P.
,
Pomraning
,
E.
,
Richards
,
K.
,
Briggs
,
T.
,
Choi
,
C.
,
McDavid
,
R.
, and
Patterson
,
M.
,
2003
, “
Multi-Dimensional Modeling of Direct-Injection Diesel Spray Liquid Length and Flame Lift-Off Length Using CFD and Parallel Detailed Chemistry
,”
SAE
Paper No. 0148-7191.
47.
Babajimopoulos
,
A.
,
Assanis
,
D.
,
Flowers
,
D.
,
Aceves
,
S.
, and
Hessel
,
R.
,
2005
, “
A Fully Coupled Computational Fluid Dynamics and Multi-Zone Model With Detailed Chemical Kinetics for the Simulation of Premixed Charge Compression Ignition Engines
,”
Int. J. Engine Res.
,
6
(
5
), pp.
497
512
.
48.
Raju
,
M.
,
Wang
,
M.
,
Dai
,
M.
,
Piggott
,
W.
, and
Flowers
,
D.
,
2012
, “
Acceleration of Detailed Chemical Kinetics Using Multi-Zone Modeling for CFD in Internal Combustion Engine Simulations
,”
SAE
Paper No. 0148-7191.
49.
Amsden
,
A. A.
,
O'rourke
,
P.
, and
Butler
,
T.
,
1989
, “
KIVA-II: A Computer Program for Chemically Reactive Flows With Sprays
,” Los Alamos National Laboratory, Los Alamos, NM.
50.
Arcoumanis
,
C.
,
Gavaises
,
M.
,
Argueyrolles
,
B.
, and
Galzin
,
F.
,
1999
, “
Modeling of Pressure-Swirl Atomizers for GDI Engines
,”
SAE
Paper No. 0148-7191.
51.
Bruno
,
B. A.
,
Santavicca
,
D. A.
, and
Zello
,
J. V.
,
2003
, “
Fuel Injection Pressure Effects on the Cold Start Performance of a GDI Engine
,”
SAE
Paper No. 0148-7191.
52.
Lee
,
S.
, and
Park
,
S.
,
2014
, “
Experimental Study on Spray Break-Up and Atomization Processes From GDI Injector Using High Injection Pressure Up to 30 MPa
,”
Int. J. Heat Fluid Flow
,
45
, pp.
14
22
.
53.
Lawler
,
B.
,
Hoffman
,
M.
,
Filipi
,
Z.
,
Güralp
,
O.
, and
Najt
,
P.
,
2012
, “
Development of a Postprocessing Methodology for Studying Thermal Stratification in an HCCI Engine
,”
ASME J. Eng. Gas Turbines Power
,
134
(
10
), p.
102801
.
54.
Lawler
,
B.
,
Joshi
,
S.
,
Lacey
,
J.
,
Guralp
,
O.
,
Najt
,
P.
, and
Filipi
,
Z.
, “
Understanding the Effect of Wall Conditions and Engine Geometry on Thermal Stratification and HCCI Combustion
,”
ASME
Paper No. ICEF2014-5687.
55.
Lawler
,
B.
,
Lacey
,
J.
,
Dronniou
,
N.
,
Dernotte
,
J.
,
Dec
,
J. E.
,
Guralp
,
O.
,
Najt
,
P.
, and
Filipi
,
Z.
,
2014
, “
Refinement and Validation of the Thermal Stratification Analysis: A Post-Processing Methodology for Determining Temperature Distributions in an Experimental HCCI Engine
,”
SAE
Paper No. 0148-7191.
56.
Lawler
,
B.
,
Mamalis
,
S.
,
Joshi
,
S.
,
Lacey
,
J.
,
Guralp
,
O.
,
Najt
,
P.
, and
Filipi
,
Z.
,
2017
, “
Understanding the Effect of Operating Conditions on Thermal Stratification and Heat Release in a Homogeneous Charge Compression Ignition Engine
,”
Appl. Therm. Eng.
,
112
, pp.
392
402
.
You do not currently have access to this content.