In this work, engine-out particulate matter (PM) mass emissions from an off-highway diesel engine measured using a low-cost photometer, scanning mobility particle sizer (SMPS), elemental versus organic carbon (EC/OC) analysis, and a photo-acoustic analyzer are compared. Tested engine operating modes spanned the range of those known to result in high semivolatile particle concentration and those that emit primarily solid particles. Photometer measurements were taken following a primary dilution stage and a sample conditioner to control relative humidity prior to the instrument. Results of the study show that the photometer could qualitatively track total particle mass trends over the tested engine conditions though it was not accurate in measuring total carbon (TC) mass concentration. Further, the required photometric calibration factor (PCF) required to accurately measure total PM mass changes with the OC fraction of the particles. Variables that influence PCF include particle effective density, which changes both as a function of particle diameter and OC fraction. Differences in refractive index between semivolatile and solid particles are also significant and contribute to high error associated with measurement of total PM using the photometer. This work illustrates that it may be too difficult to accurately measure total engine PM mass with a photometer without knowing additional information about the sampled particles. However, removing semivolatile organic materials prior to the instrument may allow the accurate estimation of EC mass concentration alone.

References

References
1.
Fang
,
W.
,
Kittelson
,
D. B.
, and
Northrop
,
W. F.
,
2017
, “
Dilution Sensitivity of Particulate Matter Emissions From Reactivity-Controlled Compression Ignition Combustion
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), pp.
1
6
.
2.
Miller
,
A. L.
,
Habjan
,
M. C.
, and
Park
,
K.
,
2007
, “
Real-Time Estimation of Elemental Carbon Emitted From a Diesel Engine
,”
Environ. Sci. Technol.
,
41
(
16
), pp.
5783
5788
.
3.
Kittelson
,
D. B.
,
Watts
,
W. F.
,
Johnson
,
J. P.
, and
Ragatz
,
A. C.
,
2008
, “
A New Method for the Real-Time Measurement of Diesel Aerosol
,”
Department of Health and Human Services Centers for Disease Control, National Institute for Occupational Safety and Health (NIOSH)
, Atlanta, GA, Report No. Grant 1 R01 OH8676-01.
4.
Moosmüller
,
H.
,
Arnott
,
W. P.
,
Rogers
,
C. F.
,
Bowen
,
J. L.
,
Gillies
,
J. A.
,
Pierson
,
W. R.
,
Collins
,
J. F.
,
Durbin
,
T. D.
, and
Norbeck
,
J. M.
,
2001
, “
Time Resolved Characterization of Diesel Particulate Emissions—Part 1: Instruments for Particle Mass Measurements
,”
Environ. Sci. Technol.
,
35
(
10
), pp.
781
787
.
5.
Steppan
,
J.
,
Henderson
,
B.
,
Johnson
,
K.
,
Khan
,
M. Y.
,
Diller
,
T.
,
Hall
,
M.
,
Lourdhusamy
,
A.
,
Allmendinger
,
K.
, and
Matthews
,
R.
,
2011
, “
Comparison of an on-Board, Real-Time Electronic PM Sensor With Laboratory Instruments Using a 2009 Heavy-Duty Diesel Vehicle
,”
SAE
Paper No. 2011-01-0627.
6.
Wang
,
X.
,
Chancellor
,
G.
,
Evenstad
,
J.
,
Farnsworth
,
J. E.
,
Hase
,
A.
,
Olson
,
G. M.
,
Sreenath
,
A.
, and
Agarwal
,
J. K.
,
2009
, “
A Novel Optical Instrument for Estimating Size Segregated Aerosol Mass Concentration in Real Time
,”
Aerosol Sci. Technol.
,
43
(
9
), pp.
939
950
.
7.
O'Shaughnessy
,
P. T.
, and
Slagley
,
J. M.
,
2002
, “
Photometer Response Determination Based on Aerosol Physical Characteristics
,”
AIHA J.
,
63
(
5
), pp.
578
585
.
8.
Cantrell
,
B. K.
, and
Watts
,
W. F.
,
1997
, “
Diesel Exhaust Aerosol: Review of Occupational Exposure
,”
Appl. Occup. Environ. Hyg.
,
12
(
12
), pp.
1019
1027
.
9.
Swanson
,
J. J.
, Jr.
,
Watts
,
W.
, and
Kittelson
,
D.
,
2012
, “
Diesel Exhaust Aerosol Measurements Using Air-Ejector and Porous Wall Dilution Techniques
,”
SAE J. Engines
,
4
(
1
), pp.
667
676
.
10.
Khalek
,
I. A.
,
Bougher
,
T.
, and
Jetter
,
J. J.
,
2010
, “
Particle Emissions From a 2009 Gasoline Direct Injection Engine Using Different Commercially Available Fuels
,”
SAE J. Fuels Lubr.
,
3
(
2
), pp.
623
637
.
11.
Liu
,
Z. G.
,
Vasys
,
V. N.
,
Dettmann
,
M. E.
,
Schauer
,
J. J.
,
Kittelson
,
D. B.
, and
Swanson
,
J.
,
2009
, “
Comparison of Strategies for the Measurement of Mass Emissions From Diesel Engines Emitting Ultra-Low Levels of Particulate Matter
,”
Aerosol Sci. Technol.
,
42
(
11
), pp.
1142
1152
.
12.
Liu
,
Z.
,
Swanson
,
J.
,
Kittelson
,
D. B.
, and
Pui
,
D. Y. H.
,
2012
, “
Comparison of Methods for Online Measurement of Diesel Particulate Matter
,”
Environ. Sci. Technol.
,
46
(
11
), pp.
6127
6133
.
13.
Wang
,
X.
,
Grose
,
M. A.
,
Caldow
,
R.
,
Osmondson
,
B. L.
,
Swanson
,
J. J.
,
Chow
,
J. C.
,
Watson
,
J. G.
,
Kittelson
,
D. B.
,
Li
,
Y.
,
Xue
,
J.
,
Jung
,
H.
, and
Hu
,
S.
,
2016
, “
Improvement of Engine Exhaust Particle Sizer (EEPS) Size Distribution Measurement—Part II: Engine Exhaust Particles
,”
J. Aerosol Sci.
,
92
, pp.
83
94
.
14.
Kittelson
,
D. B.
,
1998
, “
Engines and Nanoparticles: A Review
,”
J. Aerosol Sci.
,
29
(
5–6
), pp.
575
588
.
15.
Kim
,
J.
,
Bauer
,
H.
,
Dobovičnik
,
T.
,
Hitzenberger
,
R.
,
Lottin
,
D.
,
Ferry
,
D.
, and
Petzold
,
A.
,
2015
, “
Assessing Optical Properties and Refractive Index of Combustion Aerosol Particles Through Combined Experimental and Modeling Studies
,”
Aerosol Sci. Technol.
,
49
(
5
), pp.
340
350
.
16.
Wiscombe
,
W. J.
,
1980
, “
Improved Mie Scattering Algorithms
,”
Appl. Opt.
,
19
(
9
), pp.
1505
1509
.
17.
Swanson
,
J.
, and
Kittelson
,
D.
,
2010
, “
Evaluation of Thermal Denuder and Catalytic Stripper Methods for Solid Particle Measurements
,”
J. Aerosol Sci.
,
41
(
12
), pp.
1113
1122
.
You do not currently have access to this content.