During the commissioning and stand-still cycles of wind turbines, the rotor is often stopped or even locked leaving the rotor blades at a standstill. When the blades are at a standstill, angles of attack on the blades can be very high, and it is therefore possible that they experience vortex-induced vibrations. This experiment and analysis helps to explain the different regimes of flow at very high angles of attack, particularly on moderately twisted and tapered blades. A single blade was tested at two different flow velocities at a range of angles of attack with flow tuft visualization and hotwire measurements of the wake. Hotwire wake measurements were able to show the gradual inception and ending of certain flow regimes. The power spectral densities of these measurements were normalized in terms of Strouhal number based on the projected chord to show that certain wake features have a relatively constant Strouhal number. The shedding frequency appears then to be relatively independent of chord taper and twist. Vortex generators (VGs) were tested but were found to have little influence in this case. Gurney flaps were found to modify the wake geometry, stall onset angles, and in some cases the shedding frequency.

References

References
1.
Mulleners
,
K.
, and
Raffel
,
M.
,
2013
, “
Dynamic Stall Development
,”
Exp. Fluids
,
54
(
2
), p.
1469
.
2.
Leishman
,
J. G.
,
Martin
,
G. L.
,
Aerospace
,
A.
, and
Meeting
,
S.
,
2002
, “
Challenges in Modeling the Unsteady Aerodynamics of Wind Turbines
,”
ASME
Paper No. WIND2002-37.
3.
Gharib
,
M.
, and
Roshko
,
A.
,
1987
, “
The Effect of Flow Oscillations on Cavity Drag
,”
J. Fluid Mech.
,
177
(
1
), pp.
501
530
.
4.
Hudy
,
L. M.
, and
Naguib
,
A.
,
2007
, “
Stochastic Estimation of a Separated-Flow Field Using Wall-Pressure-Array Measurements
,”
Phys. Fluids
,
19
(
2
), p.
024103
.
5.
Mulleners
,
K.
,
Pape
,
A. L.
,
Heine
,
B.
, and
Raffel
,
M.
,
2012
, “
The Dynamics of Static Stall
,”
16th International Symposium on Applications of Laser Techniques to Fluid Mechanics
, Lisbon, Portugal, July 9–12, pp.
9
12
.
6.
Manolesos
,
M.
,
Papadakis
,
G.
, and
Voutsinas
,
S. G.
,
2014
, “
Experimental and Computational Analysis of Stall Cells on Rectangular Wings
,”
Wind Energy
,
17
(
6
), pp.
939
955
.
7.
Hoerner
,
S. F.
, and
Borst
,
H. V.
,
1985
,
Fluid-Dynamic Lift: Practical Information on Aerodynamic and Hydrodynamic Lift
,
L. A. Hoerner
,
Berkeley, CA
.
8.
Besem
,
F. M.
,
Thomas
,
J. P.
,
Kielb
,
R. E.
, and
Dowell
,
E. H.
,
2016
, “
An Aeroelastic Model for Vortex-Induced Vibrating Cylinders Subject to Frequency Lock-In
,”
J. Fluids Struct.
,
61
, pp.
42
59
.
9.
Besem
,
F. M.
,
2015
, “Aeroelastic Instabilities due to Unsteady Aerodynamics,”
Ph.D. thesis
, Duke University, Durham, NC.https://dukespace.lib.duke.edu/dspace/handle/10161/9879
10.
Besem
,
F. M.
,
Kamrass
,
J. D.
,
Thomas
,
J. P.
,
Tang
,
D.
, and
Kielb
,
R. E.
,
2014
, “
Vortex-Induced Vibration and Frequency Lock-in of an Airfoil at High Angles of Attack
,”
ASME
Paper No. GT2014-25648.
11.
Tang
,
D.
, and
Dowell
,
E. H.
,
2014
, “
Experimental Aerodynamic Response for an Oscillating Airfoil in Buffeting Flow
,”
AIAA J.
,
52
(
6
), pp.
1170
1179
.
12.
Mueller-Vahl
,
H.
,
Pechlivanoglou
,
Georgios Nayeri
,
C.
, and
Paschereit
,
C.
,
2012
, “
Vortex Generators for Wind Turbine Blades: A Combined Wind Tunnel and Wind Turbine Parametric Study
,”
ASME
Paper No. GT2012-69197.
13.
Dima
,
C.
,
Manor
,
D.
, and
Carter
,
R. L.
,
1994
, “
Further Study of Vortex Generators' Effect on Lift and Stall Angle of Attack
,”
AIAA
Paper No. 94-0625.
14.
Greenblatt
,
D.
, and
Wygnanski
,
I.
,
2002
, “
Effect of Leading-Edge Curvature and Slot Geometry on Dynamic Stall Control
,”
AIAA
Paper No. 2002-3271.
15.
Bak
,
C.
,
Skrzypiński
,
W.
,
Gaunaa
,
M.
,
Villanueva
,
H.
,
Brønnum
,
N. F.
, and
Kruse
,
E. K.
,
2016
, “
Full Scale Wind Turbine Test of Vortex Generators Mounted on the Entire Blade
,”
J. Phys.: Conf. Ser.
,
753
, p.
022001
.
16.
Castro
,
O.
,
Lennie
,
M.
,
Pechlivanoglou
,
G.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2015
, “
The Use of a New Fatigue Tool (ALBdeS) to Analyse the Effects of Vortex Generators on Wind Turbines
,”
ASME
Paper No. GT2015-43198.
17.
Skrzypiński
,
W.
,
Gaunaa
,
M.
, and
Bak
,
C.
,
2014
, “
The Effect of Mounting Vortex Generators on the DTU 10 MW Reference Wind Turbine Blade
,”
J. Phys.: Conf. Ser.
,
524
, p.
012034
.
18.
Pechlivanoglou
,
G.
,
Fuehr
,
S.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2010
, “
The Effect of Distributed Roughness on the Power Performance of Wind Turbines
,”
ASME
Paper No. GT2010-23258.
19.
Greenblatt
,
D.
, and
Wygnanski
,
I.
,
2001
, “
Dynamic Stall Control by Periodic Excitation—Part 2: NACA 0015 Mechanisms
,”
J. Aircr.
,
38
(
3
), pp.
439
447
.
20.
Greenblatt
,
D.
, and
Wygnanski
,
I.
,
2001
, “
Dynamic Stall Control by Periodic Excitation—Part 1: NACA 0015 Parametric Study
,”
J. Aircr.
,
38
(
3
), pp.
430
438
.
21.
Pape
,
A. L.
,
Costes
,
M.
,
Joubert
,
G.
,
David
,
F.
, and
Deluc
,
J.-M.
,
2012
, “
Dynamic Stall Control Using Deployable Leading-Edge Vortex Generators
,”
AIAA J.
,
50
(
10
), pp.
2135
2145
.
22.
Mai
,
H.
,
Dietz
,
G.
, and
Geißler
,
W.
,
2005
, “
Dynamic Stall Control by Leading Edge Vortex Generators
,”
American Helicopter Society 62nd Annual Forum
, Phoenix, AZ, May 9–11, pp.
26
36
.https://www.researchgate.net/profile/Kai_Richter3/publication/224997514_Dynamic_Stall_Control_by_Leading_Edge_Vortex_Generators/links/00463526125385f4a6000000/Dynamic-Stall-Control-by-Leading-Edge-Vortex-Generators.pdf
23.
Heine
,
B.
,
Mulleners
,
K.
,
Gardner
,
A.
, and
Mai
,
H.
,
2009
, “
On the Effects of Leading Edge Vortex Generators on an OA209 Airfoil
,”
10th ONERA-DLR Aerospace Symposium
, Berlin, Oct. 6–8, pp.
1
12
.https://www.researchgate.net/publication/225002734_On_the_effects_of_leading_edge_vortex_generators_on_an_OA209_airfoil
24.
Martin
,
P.
,
Wilson
,
J.
,
Berry
,
J.
, and
Wong
,
T.
,
2008
, “
Passive Control of Compressible Dynamic Stall
,”
AIAA
Paper No. 2008-7506.
25.
Lennie
,
M.
,
Wendler
,
J.
,
Pechlivanoglou
,
G.
,
Nayeri
,
C.
,
Paschereit
,
C. O.
, and
Greenblatt
,
D.
,
2017
, “
Development of a Partially Stochastic Unsteady Aerodynamics Model
,”
AIAA
Paper No. 2017-2002.
26.
Liebeck
,
R. H.
,
1978
, “
Design of Subsonic Airfoils for High Lift
,”
J. Aircr.
,
15
(
9
), pp.
547
561
.
27.
Dam
,
C. P. V.
,
Chow
,
R.
,
Zayas
,
J. R.
, and
Berg
,
D. E.
,
2007
, “
Computational Investigations of Small Deploying Tabs and Flaps for Aerodynamic Load Control
,”
J. Phys.: Conf. Ser.
,
75
, p.
012027
.
28.
Bach
,
A.
,
2015
, “
Gurney Flaps and Micro-Tabs for Load Control on Wind Turbines
,” Technischen Universität Berlin, Berlin.
29.
Holst
,
D.
,
Bach
,
A. B.
,
Nayeri
,
C. N.
,
Paschereit
,
C. O.
, and
Pechlivanoglou
,
G.
,
2015
, “
Wake Analysis of a Finite Width Gurney Flap
,”
ASME J. Eng. Gas Turbines Power
,
138
(
6
), p.
062602
.
30.
Lennie
,
M.
,
Bach
,
A.
,
Pechlivanoglou
,
G.
,
Nayeri
,
C.
, and
Paschereit
,
C. O.
,
2016
, “
The Unsteady Aerodynamic Response of an Airfoil With Microtabs and It's Implications for Aerodynamic Damping
,”
AIAA
Paper No. 2016-1006.
31.
Wang
,
K.
,
Riziotis
,
V. A.
, and
Voutsinas
,
S. G.
,
2016
, “
Aeroelastic Stability of Idling Wind Turbines
,”
J. Phys.: Conf. Ser.
,
753
, p.
042008
.
32.
Pirrung
,
G.
,
Madsen
,
H.
, and
Schreck
,
S.
,
2016
, “
Trailed Vorticity Modeling for Aeroelastic Wind Turbine Simulations in Stand Still
,”
J. Phys.: Conf. Ser.
,
753
, p.
042007
.
33.
Leishman
,
J. G.
, and
Beddoes
,
T. S.
,
1989
, “
A Semi-Empirical Model for Dynamic Stall
,”
J. Am. Helicopter Soc.
,
34
(
3
), pp.
3
17
.
34.
Wendler
,
J.
,
Marten
,
D.
,
Nayeri
,
C. N.
,
Pechlivanoglou
,
G.
, and
Paschereit
,
C. O.
,
2016
, “
Implementation and Validation of an Unsteady Aerodynamics Model
,”
ASME
Paper No. GT2016-57184.
35.
Skrzypi
,
W.
,
Gaunaa
,
M.
,
Sørensen
,
N.
,
Zahle
,
F.
, and
Heinz
,
J.
,
2014
, “
Vortex-Induced Vibrations of a DU96-W-180 Airfoil at 90° Angle of Attack
,”
Wind Energy
,
17
(
10
), pp.
1495
1514
.
36.
Skrzypiński
,
W. R.
,
Guanna
,
M.
,
Sorensen
,
N.
,
Zahle
,
F.
, and
Heinz
,
J.
,
2014
, “
Self-Induced Vibrations of a DU96-W-180 Airfoil in Stall
,”
Wind Energy
,
17
(
4
), pp.
641
655
.
37.
Zanotti
,
A.
,
Nilifard
,
R.
,
Gibertini
,
G.
,
Guardone
,
A.
, and
Quaranta
,
G.
,
2014
, “
Assessment of 2D/3D Numerical Modeling for Deep Dynamic Stall Experiments
,”
J. Fluids Struct.
,
51
, pp.
97
115
.
38.
Gaunaa
,
M.
,
Heinz
,
J.
, and
Skrzypiński
,
W.
,
2016
, “
Toward an Engineering Model for the Aerodynamic Forces Acting on Wind Turbine Blades in Quasisteady Standstill and Blade Installation Situations
,”
J. Phys.: Conf. Ser.
,
753
, p.
022007
.
39.
Pechlivanoglou
,
G.
,
Fischer
,
J.
,
Eisele
,
O.
,
Vey
,
S.
,
Nayeri
,
C.
, and
Paschereit
,
C.
,
2015
, “
Development of a Medium Scale Research Hawt for Inflow and Aerodynamic Research in the TU Berlin Wind Tunnel
,” 12th German Wind Energy Conference (DEWEK), Bremen, Germany, May 19–20.
40.
Vey
,
S.
,
Marten
,
D.
,
Pechlivanoglou
,
G.
,
Nayeri
,
C.
, and
Paschereit
,
C. O.
,
2015
, “
Experimental and Numerical Investigations of a Small Research Wind Turbine
,”
AIAA
Paper No. 2015-3392.
41.
Mayda
,
E.
,
Obrecht
,
J.
,
Dixon
,
K.
,
Zamora
,
A.
,
Mailly
,
L.
,
Sievers
,
R.
, and
Singh
,
M.
,
2013
, “
Wind Turbine Rotor R & D—An OEM Perspective
,”
AIAA
Paper No. 2015-3392.
You do not currently have access to this content.