This work investigates the unsteady pressure fluctuations and inception of vortical flow in a hydraulic turbine during speed-no-load conditions. At speed-no-load (SNL), the available hydraulic energy dissipates to the blades without producing an effective torque. This results in high-amplitude pressure loading and fatigue development, which take a toll on a machine's operating life. The focus of the present study is to experimentally measure and numerically characterize time-dependent pressure amplitudes in the vaneless space, runner and draft tube of a model Francis turbine. To this end, ten pressure sensors, including four miniature sensors mounted in the runner, were integrated into a turbine. The numerical model consists of the entire turbine including Labyrinth seals. Compressible flow was considered for the numerical study to account for the effect of flow compressibility and the reflection of pressure waves. The results clearly showed that the vortical flow in the blade passages induces high-amplitude stochastic fluctuations. A distinct flow pattern in the turbine runner was found. The flow near the blade suction side close to the crown was more chaotic and reversible (pumping), whereas the flow on the blade pressure side close to the band was accelerating (turbine) and directed toward the outlet. Flow separation from the blade leading edge created a vortical flow, which broke up into four parts as it traveled further downstream and created high-energy turbulent eddies. The source of reversible flow was found at the draft tube elbow, where the flow in the center core region moves toward the runner cone. The vortical region located at the inner radius of the elbow gives momentum to the wall-attached flow and is pushed toward the outlet, whereas the flow at the outer radius is pushed toward the runner. The cycle repeats at a frequency of 22.3 Hz, which is four times the runner rotational speed.

References

References
1.
Hell
,
J.
,
2017
, “
High Flexible Hydropower Generation Concepts for Future Grids
,”
J. Phys. Conf. Ser.
,
813
(
1
), p.
012007
.
2.
Trivedi
,
C.
,
Agnalt
,
E.
, and
Dahlhaug
,
O. G.
,
2018
, “
Experimental Study of a Francis Turbine Under Variable-Speed and Discharge Conditions
,”
Renewable Energy
,
119
, pp.
447
458
.
3.
Trivedi
,
C.
,
Agnalt
,
E.
, and
Dahlhaug
,
O. G.
,
2017
, “
Investigations of Unsteady Pressure Loading in a Francis Turbine During Variable-Speed Operation
,”
Renewable Energy
,
113
, pp.
397
410
.
4.
Beevers
,
D.
,
Branchini
,
L.
,
Orlandini
,
V.
,
De Pascale
,
A.
, and
Perez-Blanco
,
H.
,
2015
, “
Pumped Hydro Storage Plants With Improved Operational Flexibility Using Constant Speed Francis Runners
,”
Appl. Energy
,
137
, pp.
629
637
.
5.
Ulbig
,
A.
,
Rinke
,
T.
,
Chatzivasileiadis
,
S.
, and
Andersson
,
G.
,
2013
, “
Predictive Control for Real-Time Frequency Regulation and Rotational Inertia Provision in Power Systems
,”
52nd Annual Conference on Decision and Control
(
CDC
), Florence, Italy, Dec. 10–13, pp.
2946
2953
.
6.
Gagnon
,
M.
,
Tahan
,
S.
,
Bocher
,
P.
, and
Thibault
,
D.
,
2010
, “
Impact of Startup Scheme on Francis Runner Life Expectancy
,”
IOP Conf. Ser. Earth Environ. Sci.
,
12
(
1
), p.
012107
.
7.
Gagnon
,
M.
,
Nicolle
,
J.
,
Morissette
,
J. F.
, and
Lawrence
,
M.
,
2016
, “
A Look at Francis Runner Blades Response During Transients
,”
IOP Conf. Ser. Earth Environ. Sci.
,
49
(
5
), p.
052005
.
8.
Sabourin
,
M.
,
Thibault
,
D.
,
Bouffard
,
D.
, and
Levesque
,
M.
,
2010
, “
New Parameters Influencing Hydraulic Runner Lifetime
,”
IOP Conf. Ser. Earth Environ. Sci.
,
12
(
1
), p.
012050
.
9.
Seidel
,
U.
,
Mende
,
C.
,
Hübner
,
B.
,
Weber
,
W.
, and
Otto
,
A.
,
2014
, “
Dynamic Loads in Francis Runners and Their Impact on Fatigue Life
,”
IOP Conf. Ser. Earth Environ. Sci.
,
22
(
3
), p.
032054
.
10.
Monette
,
C.
,
Marmont
,
H.
,
Chamberland-Lauzon
,
J.
,
Skagerstrand
,
A.
,
Coutu
,
A.
, and
Carlevi
,
J.
,
2016
, “
Cost of Enlarged Operating Zone for an Existing Francis Runner
,”
IOP Conf. Ser. Earth Environ. Sci.
,
49
(
7
), p.
072018
.
11.
Ohashi
,
H.
,
1994
, “
Case Study of Pump Failure Due to Rotor-Stator Interaction
,”
Int. J. Rotating Mach.
,
1
(
1
), pp.
53
60
.
12.
Dorji
,
U.
, and
Ghomashchi
,
R.
,
2014
, “
Hydro Turbine Failure Mechanisms: An Overview
,”
Eng. Fail. Anal.
,
44
, pp.
136
147
.
13.
Luna-Ramírez
,
A.
,
Campos-Amezcua
,
A.
,
Dorantes-Gómez
,
O.
,
Mazur-Czerwiec
,
Z.
, and
Muñoz-Quezada
,
R.
,
2016
, “
Failure Analysis of Runner Blades in a Francis Hydraulic Turbine—Case Study
,”
Eng. Fail. Anal.
,
59
, pp.
314
325
.
14.
Liu
,
X.
,
Luo
,
Y.
, and
Wang
,
Z.
,
2016
, “
A Review on Fatigue Damage Mechanism in Hydro Turbines
,”
Renewable Sustainable Energy Rev.
,
54
, pp.
1
14
.
15.
Keck
,
H.
, and
Sick
,
M.
,
2008
, “
Thirty Years of Numerical Flow Simulation in Hydraulic Turbomachines
,”
Acta Mech.
,
201
(
1–4
), pp.
211
229
.
16.
Keck
,
H.
,
Weiss
,
T.
,
Michler
,
W.
, and
Sick
,
M.
,
2009
, “
Recent Developments in the Dynamic Analysis of Water Turbines
,”
Proc. Inst. Mech. Eng. Part J.
,
223
(
4
), pp.
415
427
.
17.
Zuo
,
Z.
,
Liu
,
S.
,
Sun
,
Y.
, and
Wu
,
Y.
,
2015
, “
Pressure Fluctuations in the Vaneless Space of High-Head Pump-Turbines—
A Review,”
Renewable Sustainable Energy Rev.
,
41
, pp.
965
974
.
18.
Kuznetsov
,
I.
,
Zakharov
,
A.
,
Orekhov
,
G.
,
Minakov
,
A.
,
Dekterev
,
A.
, and
Platonov
,
D.
,
2012
, “
Investigation of Free Discharge Through the Hydro Units of High Head Francis Turbine
,”
IOP Conf. Ser. Earth Environ. Sci.
,
15
(
5
), p.
052002
.
19.
Xia
,
L. S.
,
Cheng
,
Y. G.
,
Zhang
,
X. X.
, and
Yang
,
J. D.
,
2014
, “
Numerical Analysis of Rotating Stall Instabilities of a Pump-Turbine in Pump Mode
,”
IOP Conf. Ser. Earth Environ. Sci.
,
22
(
3
), p.
032020
.
20.
Morissette
,
J.
,
Chamberland-Lauzon
,
J.
,
Nennemann
,
B.
,
Monette
,
C.
,
Giroux
,
A.
,
Coutu
,
A.
, and
Nicolle
,
J.
,
2016
, “
Stress Predictions in a Francis Turbine at No-Load Operating Regime
,”
IOP Conf. Ser. Earth Environ. Sci.
,
49
(
7
), p.
072016
.
21.
Hosseinimanesh
,
H.
,
Devals
,
C.
,
Nennemann
,
B.
,
Reggio
,
M.
, and
Guibault
,
F.
,
2016
, “
A Numerical Study of Francis Turbine Operation at No-Load Condition
,”
ASME J. Fluids Eng.
,
139
(
1
), p.
011104
.
22.
Mende
,
C.
,
Weber
,
W.
, and
Seidel
,
U.
,
2016
, “
Progress in Load Prediction for Speed-No-Load Operation in Francis Turbines
,”
IOP Conf. Ser. Earth Environ. Sci.
,
49
(
6
), p.
062017
.
23.
Hasmatuchi
,
V.
,
Farhat
,
M.
,
Roth
,
S.
,
Botero
,
F.
, and
Avellan
,
F.
,
2011
, “
Experimental Evidence of Rotating Stall in a Pump-Turbine at Off-Design Conditions in Generating Mode
,”
ASME J. Fluids Eng.
,
133
(
5
), p.
051104
.
24.
Zeng
,
W.
,
Yang
,
J.
, and
Yang
,
W.
,
2016
, “
Instability Analysis of Pumped-Storage Stations Under No-Load Conditions Using a Parameter-Varying Model
,”
Renewable Energy
,
90
, pp.
420
429
.
25.
Trivedi
,
C.
,
Cervantes
,
M.
,
Dahlhaug
,
O.
, and
Gandhi
,
B.
,
2015
, “
Experimental Investigation of a High Head Francis Turbine During Spin-No-Load Operation
,”
ASME J. Fluids Eng.
,
137
(
6
), p.
061106
.
26.
Xia
,
L.
,
Cheng
,
Y.
,
Yang
,
Z.
,
You
,
J.
,
Yang
,
J.
, and
Qian
,
Z.
,
2017
, “
Evolutions of Pressure Fluctuations and Runner Loads During Runaway Processes of a Pump-Turbine
,”
ASME J. Fluids Eng.
,
139
(
9
), p.
091101
.
27.
Saeed
,
R. A.
,
Galybin
,
A. N.
, and
Popov
,
V.
,
2010
, “
Modelling of Flow-Induced Stresses in a Francis Turbine Runner
,”
Adv. Eng. Software
,
41
(
12
), pp.
1245
1255
.
28.
Egusquiza
,
E.
,
Valero
,
C.
,
Huang
,
X. X.
,
Jou
,
E.
,
Guardo
,
A.
, and
Rodriguez
,
C.
,
2012
, “
Failure Investigation of a Large Pump-Turbine Runner
,”
Eng. Fail. Anal.
,
23
, pp.
27
34
.
29.
Trivedi
,
C.
,
2017
, “
A Review on Fluid Structure Interaction in Hydraulic Turbines: A Focus on Hydrodynamic Damping
,”
Eng. Fail. Anal.
,
77
, pp.
1
22
.
30.
Trivedi
,
C.
,
Gogstad
,
P. J.
, and
Dahlhaug
,
O. G.
,
2017
, “
Investigation of Unsteady Pressure Pulsations in the Prototype Francis Turbines During Load Variation and Startup
,”
J. Renewable Sustainable Energy
,
9
(
6
), p.
064502
.
31.
Botero
,
F.
,
Hasmatuchi
,
V.
,
Roth
,
S.
, and
Farhat
,
M.
,
2014
, “
Non-Intrusive Detection of Rotating Stall in Pump-Turbines
,”
Mech. Syst. Signal Process.
,
48
(
1–2
), pp.
162
173
.
32.
Yan
,
J.
,
Koutnik
,
J.
,
Seidel
,
U.
, and
Huebner
,
B.
,
2010
, “
Compressible Simulation of Rotor-Stator Interaction in Pump-Turbines
,”
IOP Conf. Ser. Earth Environ. Sci.
,
12
(
1
), p.
012008
.
33.
Li
,
Z.
,
Wang
,
Z.
,
Wei
,
X.
, and
Qin
,
D.
,
2016
, “
Flow Similarity in the Rotor-Stator Interaction Affected Region in Prototype and Model Pump-Turbines
,”
ASME J. Fluids Eng.
,
138
(
6
), p.
061201
.
34.
Rodriguez
,
C. G.
,
Egusquiza
,
E.
, and
Santos
,
I. F.
,
2007
, “
Frequencies in the Vibration Induced by the Rotor Stator Interaction in a Centrifugal Pump Turbine
,”
ASME J. Fluids Eng.
,
129
(
11
), pp.
1428
1435
.
35.
Casartelli
,
E.
,
Mangani
,
L.
,
Romanelli
,
G.
, and
Staubli
,
T.
,
2014
, “
Transient Simulation of Speed-No Load Conditions With an Open-Source Based C++ Code
,”
IOP Conf. Ser. Earth Environ. Sci.
,
22
(
3
), p.
032029
.
36.
Trivedi
,
C.
,
Cervantes
,
M. J.
, and
Gandhi
,
B. K.
,
2016
, “
Numerical Investigation and Validation of a Francis Turbine at Runaway Operating Conditions
,”
Energies
,
9
(
12
), p.
22
.
37.
Trivedi
,
C.
,
Cervantes
,
M. J.
, and
Dahlhaug
,
O. G.
,
2016
, “
Numerical Techniques Applied to Hydraulic Turbines: A Perspective Review
,”
ASME Appl. Mech. Rev.
,
68
(
1
), p.
010802
.
38.
Hübner
,
B.
,
Seidel
,
U.
, and
Roth
,
S.
,
2010
, “
Application of Fluid-Structure Coupling to Predict the Dynamic Behavior of Turbine Components
,”
IOP Conf. Ser. Earth Environ. Sci.
,
12
(
1
), p.
012009
.
39.
Arpe
,
J.
,
Nicolet
,
C.
, and
Avellan
,
F.
,
2009
, “
Experimental Evidence of Hydroacoustic Pressure Waves in a Francis Turbine Elbow Draft Tube for Low Discharge Conditions
,”
ASME J. Fluids Eng.
,
131
(
8
), p.
081102
.
40.
Landry
,
C.
,
Favrel
,
A.
,
Müller
,
A.
,
Nicolet
,
C.
,
Yamamoto
,
K.
, and
Avellan
,
F.
,
2014
, “
Experimental Investigation of the Local Wave Speed in a Draft Tube With Cavitation Vortex Rope
,”
IOP Conf. Ser. Earth Environ. Sci.
,
22
(
3
), p.
032037
.
41.
Landry
,
C.
,
Favrel
,
A.
,
Müller
,
A.
,
Nicolet
,
C.
, and
Avellan
,
F.
,
2016
, “
Local Wave Speed and Bulk Flow Viscosity in Francis Turbines at Part Load Operation
,”
J. Hydraul. Res.
,
54
(
2
), pp.
185
196
.
42.
Trivedi
,
C.
,
Cervantes
,
M. J.
, and
Dahlhaug
,
O. G.
,
2016
, “
Experimental and Numerical Studies of a High-Head Francis Turbine: A Review of the Francis-99 Test Case
,”
Energies
,
9
(
12
), p.
74
.
43.
Hanjalic
,
K.
,
2005
, “
Will RANS Survive LES? A View of Perspectives
,”
ASME J. Fluids Eng.
,
127
(
5
), pp.
831
839
.
44.
Nennemann
,
B.
,
Morissette
,
J. F.
,
Chamberland-Lauzon
,
J.
,
Monette
,
C.
,
Braun
,
O.
,
Melot
,
M.
,
Coutu
,
A.
,
Nicolle
,
J.
, and
Giroux
,
A. M.
,
2014
, “
Challenges in Dynamic Pressure and Stress Predictions at No-Load Operation in Hydraulic Turbines
,”
IOP Conf. Ser. Earth Environ. Sci.
,
22
(
3
), p.
032055
.
45.
Pacot
,
O.
,
Kato
,
C.
,
Guo
,
Y.
,
Yamade
,
Y.
, and
Avellan
,
F.
,
2016
, “
Large Eddy Simulation of the Rotating Stall in a Pump-Turbine Operated in Pumping Mode at a Part-Load Condition
,”
ASME J. Fluids Eng.
,
138
(
11
), p.
111102
.
46.
Wang
,
W. Q.
,
Su
,
S. Q.
, and
Yan
,
Y.
,
2014
, “
Study on Comb Labyrinth Seals of Francis Turbine at Different Reynolds Number
,”
Adv. Comput. Model. Simul.
,
444–445
, pp.
423
426
.
47.
Roy
,
V. L.
,
Guibault
,
F.
, and
Vu
,
T. C.
,
2009
, “
Validation of a CFD Model for Hydraulic Seals
,”
Int. J. Fluid Mach. Syst.
,
2
(
4
), pp.
400
408
.
48.
Bouderlique
,
R.
,
Guibault
,
F.
,
Garon
,
A.
, and
Vu
,
T.
,
2010
, “
A Computational Model for Hydraulic Labyrinth Seals
,”
ASME
Paper No. FEDSM-ICNMM2010-31229.
49.
Čelič
,
D.
,
2015
, “
The Influence of Disc Friction Losses and Labyrinth Losses on Efficiency of High Head Francis Turbine
,”
J. Phys. Conf. Ser.
,
579
(
1
), p.
012007
.
50.
Hosseinimanesh
,
H.
,
Devals
,
C.
,
Nennemann
,
B.
, and
Guibault
,
F.
,
2015
, “
Comparison of Steady and Unsteady Simulation Methodologies for Predicting No-Load Speed in Francis Turbines
,”
Int. J. Fluid Mach. Syst.
,
8
(
3
), pp.
155
168
.
51.
Li
,
Z.
,
Bi
,
H.
,
Wang
,
Z.
, and
Yao
,
Z.
,
2016
, “
Three-Dimensional Simulation of Unsteady Flows in a Pump-Turbine During Start-Up Transient Up to Speed No-Load Condition in Generating Mode
,”
Proc. Inst. Mech. Eng. Part J.
,
230
(
6
), pp.
570
585
.
52.
IEC
,
1999
, “
Hydraulic Turbines, Storage Pumps and Pump-Turbines: Model Acceptance Tests
,” International Electrotechnical Commission, Geneva, Switzerland, Standard No. 60193.
53.
Trivedi
,
C.
,
Cervantes
,
M.
,
Gandhi
,
B.
, and
Dahlhaug
,
O. G.
,
2013
, “
Experimental and Numerical Studies for a High Head Francis Turbine at Several Operating Points
,”
ASME J. Fluids Eng.
,
135
(
11
), p.
111102
.
54.
Yin
,
J.
,
Wang
,
D.
,
Wang
,
L.
,
Wu
,
Y.
, and
Wei
,
X.
,
2012
, “
Effects of Water Compressibility on the Pressure Fluctuation Prediction in Pump Turbine
,”
IOP Conf. Ser. Earth Environ. Sci.
,
15
(
6
), p.
062030
.
55.
Zeng
,
W.
,
Yang
,
J.
, and
Guo
,
W.
,
2015
, “
Runaway Instability of Pump-Turbines in S-Shaped Regions Considering Water Compressibility
,”
ASME J. Fluids Eng.
,
137
(
5
), p.
051401
.
56.
Trivedi
,
C.
,
2017
, “
Investigations of Compressible Turbulent Flow in a High Head Francis Turbine
,”
ASME J. Fluids Eng.
,
140
(
1
), p.
011101
.
57.
Javadi
,
A.
, and
Nilsson
,
H.
,
2015
, “
Time-Accurate Numerical Simulations of Swirling Flow With Rotor-Stator Interaction
,”
Flow Turbul. Combust.
,
95
(
4
), pp.
755
774
.
58.
Javadi
,
A.
,
Bosioc
,
A.
,
Nilsson
,
H.
,
Muntean
,
S.
, and
Susan-Resiga
,
R.
,
2016
, “
Experimental and Numerical Investigation of the Precessing Helical Vortex in a Conical Diffuser, With Rotor-Stator Interaction
,”
ASME J. Fluids Eng.
,
138
(
8
), p.
081106
.
59.
Menter
,
F. R.
, and
Egorov
,
Y.
,
2006
, “
SAS Turbulence Modelling of Technical Flows
,”
Direct and Large-Eddy Simulation VI
,
E.
Lamballais
,
R.
Friedrich
,
B.
Geurts
, and
O.
Métais
, eds.,
Springer
,
Dordrecht, The Netherlands
, pp.
687
694
.
60.
Egorov
,
Y.
, and
Menter
,
F.
,
2008
, “
Development and Application of SST-SAS Turbulence Model in the DESIDER Project
,”
Advances in Hybrid RANS-LES Modelling
,
S.-H.
Peng
and
W.
Haase
, eds.,
Springer
,
Berlin
, pp.
261
270
.
61.
Younsi
,
M.
,
Djerrada
,
A.
,
Belamri
,
T.
, and
Menter
,
F.
,
2008
, “
Application of the SAS Turbulence Model to Predict the Unsteady Flow Field Behaviour in a Forward Centrifugal Fan
,”
Int. J. Comput. Fluid Dyn.
,
22
(
9
), pp.
639
648
.
62.
Mockett
,
C.
,
Fuchs
,
M.
, and
Thiele
,
F.
,
2012
, “
Progress in DES for Wall-Modelled LES of Complex Internal Flows
,”
Comput. Fluids
,
65
, pp.
44
55
.
63.
Olivier
,
P.
,
Chisachi
,
K.
, and
François
,
A.
,
2014
, “
High-Resolution LES of the Rotating Stall in a Reduced Scale Model Pump-Turbine
,”
IOP Conf. Ser. Earth Environ. Sci.
,
22
(
2
), p.
022018
.
64.
Gavrilov
,
A. A.
,
Sentyabov
,
A. V.
,
Dekterev
,
A. A.
, and
Hanjalić
,
K.
,
2017
, “
Vortical Structures and Pressure Pulsations in Draft Tube of a Francis-99 Turbine at Part Load: RANS and Hybrid RANS/LES Analysis
,”
Int. J. Heat Fluid Flow
,
63
, pp.
158
171
.
65.
Krappel
,
T.
,
Ruprecht
,
A.
, and
Riedelbauch
,
S.
,
2016
, “
Turbulence Resolving Flow Simulations of a Francis Turbine With a Commercial CFD Code
,”
High Performance Computing in Science and Engineering´15: Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2015
,
W. E.
Nagel
,
D. H.
Kröner
, and
M. M.
Resch
, eds.,
Springer International Publishing
,
Cham, Switzerland
, pp.
421
433
.
66.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
, and
Freitas
,
C. J.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.
67.
Celik
,
I. B.
,
Cehreli
,
Z. N.
, and
Yavuz
,
I.
,
2005
, “
Index of Resolution Quality for Large Eddy Simulations
,”
ASME J. Fluids Eng.
,
127
(
5
), pp.
949
958
.
68.
Pope
,
S. B.
,
2004
, “
Ten Questions concerning the Large-Eddy Simulation of Turbulent Flows
,”
New J. Phys.
,
6
(
1
), p.
35
.
69.
Dubief
,
Y.
, and
Delcayre
,
F.
,
2000
, “
On Coherent-Vortex Identification in Turbulence
,”
J. Turbul.
,
1
, p.
N11
.
70.
Nicolet
,
C.
,
Ruchonnet
,
N.
,
Alligné
,
S.
,
Koutnik
,
J.
, and
Avellan
,
F.
,
2010
, “
Hydroacoustic Simulation of Rotor-Stator Interaction in Resonance Conditions in Francis Pump-Turbine
,”
IOP Conf. Ser. Earth Environ. Sci.
,
12
(
1
), p.
012005
.
You do not currently have access to this content.