Secondary air is bled from the compressor in a gas turbine engine to cool turbine components and seal the cavities between stages. Unsealed cavities can lead to hot gas ingestion, which can degrade critical components or, in extreme cases, can be catastrophic to engines. For this study, a 1.5 stage turbine with an engine-realistic rim seal was operated at an engine-relevant axial Reynolds number, rotational Reynolds number, and Mach number. Purge flow was introduced into the interstage cavity through distinct purge holes for two different configurations. This paper compares the two configurations over a range of purge flow rates. Sealing effectiveness measurements, deduced from the use of CO2 as a flow tracer, indicated that the sealing characteristics were improved by increasing the number of uniformly distributed purge holes and improved by increasing levels of purge flow. For the larger number of purge holes, a fully sealed cavity was possible, while for the smaller number of purge holes, a fully sealed cavity was not possible. For this representative cavity model, sealing effectiveness measurements were compared with a well-accepted orifice model derived from simplified cavity models. Sealing effectiveness levels at some locations within the cavity were well-predicted by the orifice model, but due to the complexity of the realistic rim seal and the purge flow delivery, the effectiveness levels at other locations were not well-predicted.

References

References
1.
Johnson
,
B.
,
Mack
,
G.
,
Paolillo
,
R.
, and
Daniels
,
W.
,
1994
, “
Turbine Rim Seal Gas Path Flow Ingestion Mechanisms
,”
AIAA
Paper No. 1994-2703.
2.
Owen
,
J. M.
,
Zhou
,
K.
,
Pountney
,
O.
,
Wilson
,
M.
, and
Lock
,
G.
,
2012
, “
Prediction of Ingress Through Turbine Rim Seals–Part I: Externally Induced Ingress
,”
ASME J. Turbomach.
,
134
(
3
), p.
031012
.
3.
Bayley
,
F. J.
, and
Owen
,
J. M.
,
1970
, “
The Fluid Dynamics of a Shrouded Disk System With a Radial Outflow of Coolant
,”
ASME J. Eng. Power
,
92
(
3
), pp.
335
341
.
4.
Phadke
,
U. P.
, and
Owen
,
J. M.
,
1988
, “
Aerodynamic Aspects of the Sealing of Gas-Turbine Rotor–Stator Systems Part 1: The Behavior of Simple Shrouded Rotating-Disk Systems in a Quiescent Environment
,”
Int. J. Heat Fluid Flow
,
9
(
2
), pp.
98
105
.
5.
Phadke
,
U. P.
, and
Owen
,
J. M.
,
1988
, “
Aerodynamic Aspects of the Sealing of Gas-Turbine Rotor–Stator Systems Part 2: The Performance of Simple Seals in a Quasi-Axisymmetric External Flow
,”
Int. J. Heat Fluid Flow
,
9
(
2
), pp.
106
112
.
6.
Hamabe
,
K.
, and
Ishida
,
K.
,
1992
, “
Rim Seal Experiments and Analysis of a Rotor–Stator System With Nonaxisymmetric Main Flow
,”
ASME
Paper No. 92-GT-160.
7.
Chew
,
J. W.
,
Green
,
T.
, and
Turner
,
A. B.
,
1994
, “
Rim Sealing of Rotor–Stator Wheelspaces in the Presence of External Flow
,”
ASME
Paper No. 94-GT-126.
8.
Bohn
,
D. E.
,
Decker
,
A.
,
Ma
,
H.
, and
Wolff
,
M.
,
2003
, “
Influence of Sealing Air Mass Flow on the Velocity Distribution in and Inside the Rim Seal of the Upstream Cavity of a 1.5-Stage Turbine
,”
ASME
Paper No. GT2003-38459.
9.
Wang
,
C.-Z.
,
Mathiyalagan
,
S. P.
,
Johnson
,
B. V.
,
Glahn
,
J. A.
, and
Cloud
,
D. F.
,
2013
, “
Rim Seal Ingestion in a Turbine Stage From 360 Degree Time-Dependent Numerical Simulations
,”
ASME J. Turbomach.
,
136
(
3
), p.
031007
.
10.
Graber
,
D. J.
,
Daniels
,
W. A.
, and
Johnson
,
B. V.
,
1987
, “
Disk Pumping Test
,” Aero Propulsion Laboratory, Wright-Patterson Air Force Base, OH, Report No. AFWAL-TR-87-2050.
11.
Sangan
,
C. M.
,
Pountney
,
O. J.
,
Scobie
,
J. A.
,
Wilson
,
M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2013
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals—Part III: Single and Double Seals
,”
ASME J. Turbomach.
,
135
(
5
), p.
051011
.
12.
Coren
,
D. D.
,
Atkins
,
N. R.
,
Long
,
C. A.
,
Eastwood
,
D.
,
Childs
,
P. R. N.
,
Guijarro-Valencia
,
A.
, and
Dixon
,
J. A.
,
2011
, “
The Influence of Turbine Stator Well Coolant Flow Rate and Passage Configuration on Cooling Effectiveness
,”
ASME
Paper No. GT2011-46448.
13.
Andreini
,
A.
,
Da Soghe
,
R.
, and
Facchini
,
B.
,
2010
, “
Turbine Stator Well CFD Studies: Effects of Coolant Supply Geometry on Cavity Sealing Performance
,”
ASME J. Turbomach.
,
133
(
2
), p.
021008
.
14.
Teuber
,
R.
,
Li
,
Y. S.
,
Maltson
,
J.
,
Wilson
,
M.
,
Lock
,
G. D.
, and
Owen
,
J. M.
,
2013
, “
Computational Extrapolation of Turbine Sealing Effectiveness From Test Rig to Engine Conditions
,”
Proc. Inst. Mech. Eng. Part J. Power Energy
,
227
(
2
), pp.
167
178
.
15.
Green
,
T.
, and
Turner
,
A. B.
,
1994
, “
Ingestion Into the Upstream Wheelspace of an Axial Turbine Stage
,”
ASME J. Turbomach.
,
116
(
2
), pp.
327
332
.
16.
Barringer
,
M.
,
Coward
,
A.
,
Clark
,
K.
,
Thole
,
K.
,
Schmitz
,
J.
,
Wagner
,
J.
,
Alvin
,
M. A.
,
Burke
,
P.
, and
Dennis
,
R.
,
2014
, “
The Design of a Steady Aero Thermal Research Turbine (START) for Studying Secondary Flow Leakages and Airfoil Heat Transfer
,”
ASME
Paper No. GT2014-25570.
17.
Clark
,
K.
,
Barringer
,
M.
,
Coward
,
A.
,
Thole
,
K.
,
Clum
,
C.
,
Hiester
,
P.
,
Memory
,
C.
, and
Robak
,
C.
,
2016
, “
Using a Tracer Gas to Deduce Sealing Effectiveness for an Engine Realistic Rim Seal Geometry
,”
ASME
Paper No. GT2016-58095.
18.
Clark
,
K.
,
Barringer
,
M.
,
Coward
,
A.
,
Thole
,
K.
,
Clum
,
C.
,
Hiester
,
P.
,
Memory
,
C.
, and
Robak
,
C.
,
2016
, “
Effects of Purge Jet Momentum on Sealing Effectiveness
,”
ASME J. Eng. Gas Turbines Power
,
139
(3), p. 031904.
19.
Colorado Experiment Engineering Station Inc. (CEESI)
,
2012
, Venturi Flow Meter Calibration, personal communication.
20.
Feiereisen
,
J. M.
,
Paolillo
,
R. E.
, and
Wagner
,
J.
,
2000
, “
UTRC Turbine Rim Seal Ingestion and Platform Cooling Experiments
,”
AIAA
Paper No. 2000-3371.
21.
Sangan
,
C. M.
,
Pountney
,
O. J.
,
Zhou
,
K.
,
Wilson
,
M.
,
Michael Owen
,
J.
, and
Lock
,
G. D.
,
2012
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals—Part I: Externally Induced Ingress
,”
ASME J. Turbomach.
,
135
(
2
), p.
021012
.
22.
Zhou
,
D. W.
,
Roy
,
R. P.
,
Wang
,
C.-Z.
, and
Glahn
,
J. A.
,
2011
, “
Main Gas Ingestion in a Turbine Stage for Three Rim Cavity Configurations
,”
ASME J. Turbomach.
,
133
(
3
), p.
31023
.
23.
Figliola
,
R. S.
, and
Beasley
,
D. E.
,
2006
,
Theory and Design for Mechanical Measurements
,
Wiley
, Hoboken, NJ.
24.
Childs
,
P. R. N.
,
2011
,
Rotating Flow
,
Butterworth-Heinemann/Elsevier
,
Oxford, UK
.
25.
Patinios
,
M.
,
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2016
, “
Measurements and Modelling of Ingress in a New 1.5-Stage Turbine Research Facility
,”
ASME
Paper No. GT2016-57163.
26.
Phadke
,
U. P.
, and
Owen
,
J. M.
,
1988
, “
Aerodynamic Aspects of the Sealing of Gas-Turbine Rotor–Stator Systems Part 3: The Effect of Nonaxisymmetric External Flow on Seal Performance
,”
Int. J. Heat Fluid Flow
,
9
(
2
), pp.
113
117
.
27.
Johnson
,
B. V.
,
Wang
,
C.-Z.
, and
Roy
,
R. P.
,
2008
, “
A Rim Seal Orifice Model With 2 Cds and Effects of Swirl in Seals
,”
ASME
Paper No. GT2008-50650.
28.
Zhou
,
K.
,
Wood
,
S. N.
, and
Owen
,
J. M.
,
2012
, “
Statistical and Theoretical Models of Ingestion Through Turbine Rim Seals
,”
ASME J. Turbomach.
,
135
(
2
), p.
021014
.
29.
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Michael Owen
,
J.
, and
Lock
,
G. D.
,
2016
, “
Review of Ingress in Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
138
(
12
), p.
120801
.
30.
Balasubramanian
,
J.
,
Pathak
,
P. S.
,
Thiagarajan
,
J. K.
,
Singh
,
P.
,
Roy
,
R. P.
, and
Mirzamoghadam
,
A. V.
,
2015
, “
Experimental Study of Ingestion in the Rotor–Stator Disk Cavity of a Subscale Axial Turbine Stage
,”
ASME J. Turbomach.
,
137
(
9
), p.
091010
.
You do not currently have access to this content.