Approximately 30% of the energy from an internal combustion engine is rejected as heat in the exhaust gases. An inverted Brayton cycle (IBC) is one potential means of recovering some of this energy. When a fuel is burnt, water and CO2 are produced and expelled as part of the exhaust gases. In an IBC, in order to reduce compression work, the exhaust gases are cooled before compression up to ambient pressure. If coolant with a low enough temperature is available, it is possible to condense some of the water out of the exhaust gases, further reducing compressor work. In this study, the condensation of exhaust gas water is studied. The results show that the IBC installed in series on a turbocharged engine can produce an improvement of approximately 5% in brake-specific fuel consumption at the baseline conditions chosen and for a compressor inlet temperature of 310 K. The main factors that influence the work output are heat exchanger pressure drop, turbine expansion ratio, coolant temperature, and turbine inlet temperature. For conditions when condensation is possible, the water content of the exhaust gas has a significant influence on work output. The hydrogen to carbon ratio of the fuel has the most potential to vary the water content and hence the work generated by the system. Finally, a number of uses for the water generated have been presented such as to reduce the additional heat rejection required by the cycle. It can also potentially be used for engine water injection to reduce emissions.

References

References
1.
Frost
,
T.
,
Anderson
,
A.
, and
Agnew
,
B.
,
1997
, “
A Hybrid Gas Turbine Cycle (Brayton/Ericsson): An Alternative to Conventional Combined Gas and Steam Turbine Power Plant
,”
Proc. Inst. Mech. Eng., Part A
,
211
(
2
), pp.
121
131
.
2.
Fujii
,
S.
,
Kaneko
,
K.
,
Otani
,
K.
, and
Tsujikawa
,
Y.
,
2001
, “
Mirror Gas Turbines: A Newly Proposed Method of Exhaust Heat Recovery
,”
ASME J. Eng. Gas Turbines Power
,
123
(
3
), pp.
481
486
.
3.
Bianchi
,
M.
,
Negri di Montenegro
,
G.
,
Peretto
,
A.
, and
Spina
,
P.
,
2005
, “
A Feasibility Study of Inverted Brayton Cycle for Gas Turbine Repowering
,”
ASME J. Eng. Gas Turbines Power
,
127
(
3
), pp.
599
605
.
4.
Agnew
,
B.
,
Anderson
,
A.
,
Potts
,
I.
,
Frost
,
T.
, and
Alabdoadaim
,
M.
,
2003
, “
Simulation of Combined Brayton and Inverse Brayton Cycles
,”
Appl. Therm. Eng.
,
23
(
8
), pp.
953
963
.
5.
Bianchi
,
M.
,
Negri di Montenegro
,
G.
, and
Peretto
,
A.
,
2002
, “
Inverted Brayton Cycle Employment for Low-Temperature Cogenerative Applications
,”
ASME J. Eng. Gas Turbines Power
,
124
(
3
), pp.
561
565
.
6.
Alabdoadaim
,
M.
,
Agnew
,
B.
, and
Alaktiwi
,
A.
,
2004
, “
Examination of the Performance Envelope of Combined Rankine, Brayton and Two Parallel Inverse Brayton Cycles
,”
Proc. Inst. Mech. Eng., Part A
,
218
(
6
), pp.
377
385
.
7.
Copeland
,
C.
, and
Chen
,
Z.
,
2016
, “
The Benefits of an Inverted Brayton Bottoming Cycle as an Alternative to Turbocompounding
,”
ASME J. Eng. Gas Turbines Power
,
138
(
7
), p.
071701
.
8.
Bianchi
,
M.
, and
De Pascale
,
A.
,
2011
, “
Bottoming Cycles for Electric Energy Generation: Parametric Investigation of Available and Innovative Solutions for the Exploitation of Low and Medium Temperature Heat Sources
,”
Appl. Energy
,
88
(
5
), pp.
1500
1509
.
9.
Chiara
,
F.
, and
Canova
,
M.
,
2013
, “
A Review of Energy Consumption, Management, and Recovery in Automotive Systems, With Considerations of Future Trends
,”
Proc. IMechE Part D: J. Automob. Eng.
,
227
(
6
), pp.
914
936
.
10.
Wei
,
W.
,
Zhuge
,
W.
,
Zhang
,
Y.
, and
He
,
Y.
,
2010
, “
Comparative Study on Electric Turbo-Compounding Systems for Gasoline Engine Exhaust Energy Recovery
,”
ASME
Paper No. GT2010-23204.
11.
Zhuge
,
W.
,
Huang
,
L.
,
Wei
,
W.
, and
Zhang
,
Y.
,
2011
, “
Optimization of an Electric Turbo Compounding System for Gasoline Engine Exhaust Energy Recovery
,”
SAE
Paper No. 2011-01-0377.
12.
Millo
,
F.
,
Mallamo
,
F.
,
Pautasso
,
E.
, and
Ganio Mego
,
G.
,
2006
, “
The Potential of Electric Exhaust Gas Turbocharging for HD Diesel Engines
,”
SAE
Paper No. 2006-01-0437.
13.
Hopmann
,
U.
, and
Algrain
,
M.
,
2003
, “
Diesel Engine Electric Turbo Compound Technology
,”
SAE
Paper No. 2003-01-2294.
14.
Bin Mamat
,
A.
,
Martinez-Botas
,
R.
,
Chiong
,
M.
,
Rajoo
,
S.
,
Petrovic
,
S.
, and
Romagnoli
,
A.
,
2015
, “
Exhaust Gas Energy Recovery Via Electric Turbocompounding
,”
Energy Procedia
,
75
, pp.
1555
1559
.
15.
Weerasinghe
,
W.
,
Stobart
,
R.
, and
Hounsham
,
S.
,
2010
, “
Thermal Efficiency Improvement in High Output Diesel Engines a Comparison of a Rankine Cycle With Turbo-Compounding
,”
Appl. Therm. Eng.
,
30
(
14–15
), pp.
2253
2256
.
16.
Henke
,
M.
,
Monz
,
T.
, and
Aigner
,
M.
,
2013
, “
Inverted Brayton Cycle With Exhaust Gas Recirculation—A Numerical Investigation
,”
ASME J. Eng. Gas Turbines Power
,
135
(
9
), p.
091203
.
17.
Yang
,
B.
,
Mao
,
S.
,
Altin
,
O.
,
Feng
,
Z.
, and
Michaelides
,
E.
,
2011
, “
Condensation Analysis of Exhaust Gas Recirculation System for Heavy-Duty Trucks
,”
ASME J. Therm. Sci. Eng. Appl.
,
3
(
4
), p.
041007
.
18.
Kass
,
M. D.
,
Thomas
,
J. F.
,
Wilson
,
D.
,
Lewis
,
S. A.
, and
Sarles
,
A.
,
2004
, “
Assessment of Corrosivity Associated With Exhaust Gas Recirculation in a Heavy-Duty Diesel Engine
,”
SAE
Paper No. 2005-01-0657.
19.
Warey
,
A.
,
Bika
,
A. S.
,
Long
,
D.
,
Balestrino
,
S.
, and
Szymkowicz
,
P.
,
2013
, “
Influence of Water Vapor Condensation on Exhaust Gas Recirculation Cooler Fouling
,”
Int. J. Heat Mass Transfer
,
65
, pp.
807
816
.
20.
Dusenbury
,
J. S.
,
Bagwell
,
T. H.
,
Jagtoyen
,
M.
, and
Kimber
,
G.
,
2003
, “
Water Recovery From Engine Exhaust
,” U.S. Army TARDEC, Warren, MI, Technical Report No.
13951
.http://www.dtic.mil/dtic/tr/fulltext/u2/a576788.pdf
21.
Pla Perujo
,
M.
,
2004
, “
Condensation of Water Vapor and Acid Mixtures From Exhaust Gases
,”
Ph.D. thesis
, der Technischen Universität Berlin, Berlin.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.551.4871&rep=rep1&type=pdf
22.
Böhm
,
M.
,
Durst
,
B.
,
Unterweger
,
G.
, and
Rubbert
,
S.
,
2016
, “
Approaches for On-Board Water Provision for Water Injection
,”
ATZ Worldwide
,
118
(
1
), pp.
54
57
.
23.
Backman
,
J.
,
1996
, “
On the reversed Brayton Cycle With High Speed Machinery
,”
Ph.D. thesis
, Lappeenranta University of Technology, Lappeenranta, Finland.http://www.doria.fi/handle/10024/31247
24.
Lemmon
,
E. W.
,
McLinden
,
M. O.
, and
Friend
,
D. G.
, 2016, “
Thermophysical Properties of Fluid Systems
,”
NIST Chemistry WebBook
, National Institute of Standards and Technology, Gaithersburg, MD, NIST Standard No. 69.
25.
Kennedy
,
I.
,
Chen
,
Z.
,
Ceen
,
B.
,
Jones
,
S.
, and
Copeland
,
C.
,
2018
, “
Experimental Investigation of an Inverted Brayton Cycle for Exhaust Gas Energy Recovery
,”
ASME
Paper No. GT2018-75386.
26.
Griffith
,
R.
,
Slaughter
,
S.
, and
Mavrosakis
,
P.
,
2007
, “
Applying Ball Bearings to the Series Turbochargers for the Caterpillar® Heavy-Duty On-Highway Truck Engines
,”
SAE
Paper No. 2007-01-4235
.
27.
Tanimoto
,
K.
,
Kajihara
,
K.
, and
Yanai
,
K.
,
2000
, “
Performance of Hybrid Ceramic Ball Bearing for Turbochargers
,”
Koyo Eng. J. Engl. Ed.
,
157E
, pp.
21
31
.
28.
Deligant
,
M.
,
Podevin
,
P.
, and
Descombes
,
G.
,
2012
, “
Experimental Identification of Turbocharger Mechanical Friction Losses
,”
Energy
,
39
(
1
), pp.
388
394
.
29.
Serrano
,
J.
,
Olmeda
,
P.
,
Arnau
,
F.
,
Dombrovsky
,
A.
, and
Smith
,
L.
,
2015
, “
Turbocharger Heat Transfer and Mechanical Losses Influence in Predicting Engines Performance by Using One-Dimensional Simulation Codes
,”
Energy
,
86
, pp.
204
218
.
30.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
Singapore
.
31.
Kim
,
J.
,
Park
,
H.
,
Bae
,
C.
,
Choi
,
M.
, and
Kwak
,
Y.
,
2016
, “
Effects of Water Direct Injection on the Torque Enhancement and Fuel Consumption Reduction of a Gasoline Engine Under High-Load Conditions
,”
Int. J. Engine Res.
,
17
(
7
), pp.
795
808
.
You do not currently have access to this content.