The internal combustion Rankine cycle (ICRC) engine utilizes pure oxygen as the oxidant instead of air during combustion to prevent the generation of nitrogen oxide emissions and lower the cost of CO2 recovery. To control combustion intensity and increase efficiency, water injection technology is implemented as it can increase the in-cylinder working fluid during combustion process. To further enhance the system thermal efficiency, the injected water is heated using coolant and waste heat before being directly injected into combustion chamber. The main challenge of controlling the ICRC engine is the interaction between water injection process and combustion stability. Ion current detection provides a potential solution of real-time detection of in-cylinder combustion status and water injection process simultaneously. In this paper, the characteristics of ion current signal in an ICRC engine were studied. The results indicate the ion current signal is primarily affected by the combination of trapped water vapor injected in the last cycle and in-cylinder combustion intensity. The water vapor contributes to the ionization reactions, which lead to enhanced ion current signals under water cycle. The ion current signal is capable of reflecting the operating conditions of the in-cylinder water injector. The phase of the ion current peak value has a linear relation as the water injection timing is delayed, and ion current detection technology has the potential to detect the combustion phase under different engine loads in an internal combustion Rankine cycle engine.

References

References
1.
Long
,
S. P.
,
Ainsworth
,
E. A.
,
Rogers
,
A.
, and
Ort
,
D. R.
,
2004
, “
Rising Atmospheric Carbon Dioxide: Plants Face the Future
,”
Annu. Rev. Plant Biol.
,
55
, pp.
591
628
.
2.
Buhre
,
B. J. P.
,
Elliott
,
L. K.
,
Sheng
,
C. D.
,
Gupta
,
R. P.
, and
Wall
,
T. F.
,
2005
, “
Oxy-Fuel Combustion Technology for Coal-Fired Power Generation
,”
Prog. Energy Combust. Sci.
,
31
(
4
), pp.
283
307
.
3.
Andrzej
,
Z.
, and
Paweł
,
G.
,
2014
, “
Analysis of Cumulative Energy Consumption in an Oxy-Fuel Combustion Power Plant Integrated With a CO2 Processing Unit
,”
Energy Convers. Manage.
,
87
, pp.
1305
1314
.
4.
Park
,
S. K.
,
Kim
,
T. S.
,
Sohn
,
J. L.
, and
Lee
,
Y. D.
,
2011
, “
An Integrated Power Generation System Combining Solid Oxide Fuel Cell and Oxy-Fuel Combustion for High Performance and CO2 Capture
,”
Appl. Energy
,
88
(
4
), pp.
1187
96
.
5.
Toftegaard Maja
,
B.
,
Jacob
,
B.
, and
Jensen Peter
,
A.
,
2010
, “
Oxy-Fuel Combustion of Solid Fuels
,”
Prog. Energy Combust. Sci.
,
36
(
5
), pp.
581
625
.
6.
Gopan
,
A.
,
Kumfer
,
B. M.
,
Phillips
,
J.
,
Thimsen
,
D.
,
Smith
,
R.
, and
Axelbaum
,
R. L.
,
2014
, “
Process Design and Performance Analysis of a Staged, Pressurized Oxy-Combustion (SPOC) Power Plant for Carbon Capture
,”
Appl. Energy
,
125
, pp.
179
88
.
7.
Okawa
,
M.
,
Kimura
,
N.
,
Kiga
,
T.
,
Takano
,
S.
,
Arai
,
K.
, and
Kato
,
M.
,
1997
, “
Trial Design for a CO2 Recovery Power Plant by Burning Pulverized Coal in O2/CO2
,”
Energy Convers. Manage.
,
38
, pp.
123
127
.
8.
DoE
, 2014, “
Oxy/Fuel Combustor Development (39 month program)
,” U.S. Department of Energy, Washington, DC, Report No. DE-FC26-05NT42645.
9.
Anderson
,
R. E.
,
Baxter
,
E.
,
Doyle
,
S. E.
, and
Viteri
,
F.
,
2003
, “
A Demonstrated 20MWt Gas Generator for a Clean Steam Power Plant
,”
28th International Technical Conference on Coal Utilization & Fuel Systems, Clearwater
, FL, Mar. 10–13.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.143.5798&rep=rep1&type=pdf
10.
Chorpening
,
B.
,
Richards
,
G. A.
,
Casleton
,
K. H.
,
Woike
,
M.
,
Willis
,
B.
, and
Hoffman
,
L.
,
2003
, “
Demonstration of a Reheat Combustor for Power Production With CO2 Sequestration
,”
ASME
Paper No. GT2003-38511.
11.
Kizuka
,
N.
,
Sagae
,
K.
,
Anzai
,
S.
,
Marushima
,
S.
,
Ikeguchi
,
T.
, and
Kawaike
,
K.
,
1999
, “
Conceptual Design of the Cooling System for 1700 °C Class, Hydrogen-Fueled Combustion Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
121
(
1
), pp.
108
115
.
12.
Anderson
,
R. E.
,
MacAdam
,
S.
,
Viteri
,
F.
,
Davies
,
D. O.
,
Downs
,
J. P.
, and
Paliszewski
,
A.
,
2008
, “
Adapting Gas Turbines to Zero-Emissions Oxy-Fuel Power Plants
,”
ASME
Paper No. GT2008-51377.
13.
Bilger
,
R. W.
,
1999
, “
Zero Release Combustion Technologies and the Oxygen Economy
,”
Fifth International Conference on Technologies and Combustion for a Clean Environment
, Lisbon, Portugal, Jul. 12–15, pp. 1039–1046.
14.
Bilger
,
R. W.
, and
Wu
,
Z.
,
2009
, “
Carbon Capture for Automobiles Using Internal Combustion Rankine Cycle Engines
,”
ASME J. Eng. Gas Turbines Power
,
131
(
3
), p.
034502
.
15.
Wu
,
Z-J.
,
Yu
,
X.
,
Fu
,
L-Z.
,
Deng
,
J.
,
Hu
,
Z. J.
, and
Li
,
L. G.
,
2014
, “
A High Efficiency Oxy-Fuel Internal Combustion Engine Cycle With Water Direct Injection for Waste Heat Recovery
,”
Energy
,
70
, pp.
110
120
.
16.
Conklin
,
J. C.
, and
Szybist
,
J. P. A.
,
2010
, “
Highly Efficient Six Stroke Internal Combustion Engine Cycle With Water Injection for In-Cylinder Exhaust Heat Recovery
,”
Energy.
,
35
(4), pp.
1658
1664
.
17.
Fu
,
J.
,
Liu
,
J.
,
Ren
,
C.
,
Wang
,
L.
,
Deng
,
B.
, and
Xu
,
Z.
,
2012
, “
An Open Steam Power Cycle Used for IC Engine Exhaust Gas Energy Recovery
,”
Energy
,
44
(
1
), pp.
544
554
.
18.
Osman
,
A.
,
2009
, “
Feasibility Study of a Novel Combustion Cycle Involving Oxygen and Water
,”
SAE
Paper No. 2009-01-2808.
19.
Boretti
,
A.
,
Osman
,
A.
, and
Aris
,
I.
,
2011
, “
Direct Injection of Hydrogen, Oxygen and Water in a Novel Two Stroke Engine
,”
Int. J. Hydrogen Energy
,
36
(
16
), pp.
10100
10106
.
20.
Lai
,
N. A.
, and
Fischer
,
J.
,
2012
, “
Efficiencies of Power Flash Cycles
,”
Energy
,
44
(
1
), pp.
1017
1027
.
21.
Hewavitarane
,
D.
, and
Yoshiyama
,
S.
,
2015
, “
The Fundamentals Governing the Operation and Efficiency of a Superheated Liquid Flash, Boiling (S.L.F.B) Cycle Powered Reciprocating Engine for Automotive Waste Heat Recovery
,”
SAE
Paper No. 2015-01-1966.
22.
Wang
,
Z.
,
Liu
,
H.
,
Song
,
T.
,
Qi
,
Y.
,
He
,
X.
,
Shuai
,
S.
, and
Wang
,
J.
,
2015
, “
Relationship Between Super-Knock and Pre-Ignition
,”
Int. J. Engine Res.
,
16
(
2
), pp.
166
180
.
23.
Qi
,
Y.
,
Wang
,
Z.
,
Wang
,
J.
, and
He
,
X.
,
2015
, “
Effects of Thermodynamic Conditions on the End Gas Combustion Mode Associated With Engine Knock
,”
Combust. Flame
,
162
(
11
), pp.
4119
4128
.
24.
Hoppe
,
F.
,
Thewes
,
M.
,
Baumgarten
,
H.
, and
Dohmen
,
J.
,
2016
, “
Water Injection for Gasoline Engines: Potentials, Challenges, and Solutions
,”
Int. J. Engine Res.
,
17
(
1
), pp.
86
96
.
25.
Kim
,
J.
,
Park
,
H.
,
Bae
,
C.
,
Choi
,
M.
, and
Kwak
,
Y.
,
2015
, “
Effects of Water Direct Injection on the Torque Enhancement and Fuel Consumption Reduction of a Gasoline Engine Under High-Load Conditions
,”
Int. J. Engine Res.
,
17
(
7
) pp.
795
808
.
26.
Worm
,
J.
,
Naber
,
J.
,
Duncan
,
J.
,
Barros
,
S.
, and
Atkinson
,
W.
,
2017
, “
Water Injection as an Enabler for Increased Efficiency at High-Load in a Direct Injected, Boosted, SI Engine
,”
SAE
Paper No. 2017-01-0663.
27.
Miganakallu
,
N.
,
Naber
,
J. D.
,
Rao
,
S.
,
Atkinson
,
W.
, and
Barros
,
S.
,
2017
, “
Experimental Investigation of Water Injection Technique in Gasoline Direct Injection Engine
,”
ASME
Paper No. GT2003-38511.
28.
De Bellis
,
V.
,
Bozza
,
F.
,
Teodosio
,
L.
, and
Valentino
,
G.
,
2017
, “
Experimental and Numerical Study of the Water Injection to Improve the Fuel Economy of a Small Size Turbocharged SI Engine
,”
SAE Int. J. Engines
,
10
(
2
), pp.
550
561
.
29.
Wu
,
Z-J.
,
Yu
,
X.
,
Fu
,
L-Z.
,
Deng
,
J.
, and
Li
,
L. G.
,
2014
, “
Experimental Study of the Effect of Water Injection on the Cycle Performance of an Internal Combustion Rankine Cycle Engine
,”
Proc. IMechE Part D: J. Automot. Eng.
,
288
(
5
), pp.
580
588
.
30.
Yu
,
X.
,
Wu
,
Z.
,
Fu
,
L.
,
Deng
,
J.
,
Hu
,
Z.
, and
Li
,
L.
, 2013, “
Study of Combustion Characteristics of a Quasi Internal Combustion Rankine Cycle Engine
,”
SAE
Paper No. 2013-01-2698.
31.
Fu
,
L.
,
Wu
,
Z.
,
Li
,
L.
, and
Yu
,
X.
,
2014
, “
Effect of Water Injection Temperature on Characteristics of Combustion and Emissions for Internal Combustion Rankine Cycle Engine
,”
SAE
Paper No. 2014-01-2600.
32.
Wu
,
Z.
,
Fu
,
L.
,
Gao
,
Y.
,
Yu
,
X.
,
Deng
,
J.
, and
Li
,
L.
,
2016
, “
Thermal Efficiency Boundary Analysis of an Internal Combustion Rankine Cycle Engine
,”
Energy
,
94
, pp.
38
49
.
33.
Malaczynski
,
G.
,
Roth
,
G.
, and
Johnson
,
D.
,
2013
, “
Ion-Sense-Based Real-Time Combustion Sensing for Closed Loop Engine Control
,”
SAE Int. J. Engines
,
6
(
1
), pp.
267
277
.
34.
Chen
,
Y.
,
Dong
,
G.
,
Mack
,
J. H.
,
Butt
,
R. H.
,
Chen
,
J. Y.
, and
Dibble
,
R. W.
,
2016
, “
Cyclic Variations and Prior-Cycle Effects of Ion Current Sensing in an HCCI Engine: A Time-Series Analysis
,”
Appl. Energy.
,
168
, pp.
628
635
.
35.
Mehresh
,
P.
,
Souder
,
J.
,
Flowers
,
D.
,
Riedel
,
U.
, and
Dibble
,
R. W.
,
2005
, “
Combustion Timing in HCCI Engines Determined by Ion-Sensor: Experimental and Kinetic Modeling
,”
Proc. Combust Inst.
,
30
(
2
), pp.
2701
2709
.
36.
Henein
,
N. A.
,
Badawy
,
T.
,
Rai
,
N.
, and
Bryzik
,
W.
,
2012
, “
Ion Current, Combustion and Emission Characteristics in an Automotive Common Rail Diesel Engine
,”
ASME J. Eng. Gas Turbines Power
,
134
(
4
), p.
042801
.
37.
Liu
,
Y.
,
Li
,
L.
,
Ye
,
J.
,
Wu
,
Z.
, and
Deng
,
J.
,
2015
, “
Numerical Simulation Study on Correlation Between Ion Current Signal and NOx Emissions in Controlled Auto-Ignition Engine
,”
Appl. Energy.
,
156
, pp.
776
782
.
38.
Estefanous
,
F. A. A.
,
Badawy
,
T.
, and
Henein
,
N.
,
2013
, “
Cycle Resolved In-Cylinder NOx and Ion Current Measurements in a Diesel Engine
,”
SAE
Paper No. 2013-01-0555.
39.
Gao
,
Z.
,
Li
,
B.
,
Li
,
C.
,
Liu
,
B.
,
Liu
,
S.
,
Wu
,
X.
, and
Huang
,
Z.
,
2015
, “
Investigation on Characteristics of Ion Current in a Methanol Direct-Injection Spark-Ignition Engine
,”
Fuel.
,
141
, pp.
185
191
.
40.
Badawy
,
T.
,
Shrestha
,
A.
, and
Henein
,
N.
,
2012
, “
Detection of Combustion Resonance Using an Ion Current Sensor in Diesel Engines
,”
ASME J. Eng. Gas Turbines Power
,
134
(
5
), p.
052802
.
41.
Dong
,
G.
,
Li
,
L.
, and
Yu
,
S.
,
2009
, “
Misfiring Control in Current Cycle at Engine Start Employing Ion Sensing Technology
,”
SAE
Paper No. 2009-01-2713.
42.
Fan
,
Q.
,
Bian
,
J.
,
Lu
,
H.
,
Tong
,
S.
, and
Li
,
L.
,
2014
, “
Misfire Detection and Re-Ignition Control by Ion Current Signal Feedback During Cold Start in Two-Stage Direct-Injection Engines
,”
Int. J. Engine Res.
,
15
(
1
), pp.
37
47
.
43.
Dong
,
G.
,
Chen
,
Y.
,
Wu
,
Z.
,
Li
,
L.
, and
Dibble
,
R.
,
2015
, “
Study on the Phase Relation Between Ion Current Signal and Combustion Phase in an HCCI Combustion Engine
,”
Proc. Combust Inst.
,
35
(
3
), pp.
3097
3105
.
44.
Zhang
,
Z.
,
Zhao
,
F.
,
Li
,
L.
,
Wu
,
Z.
,
Deng
,
J.
, and
Hu
,
Z.
,
2014
, “
Closed-Loop Control of Low Temperature Combustion Employing Ion Current Detecting Technology
,”
SAE
Paper No. 2014-01-1362.
45.
Strandh
,
P.
,
Christensen
,
M.
,
Bengtsson
,
J.
,
Johansson
,
R.
,
Vressner
,
A.
,
Tunestål
,
P.
, and
Johansson
,
B.
,
2003
, “
Ion Current Sensing for HCCI Combustion Feedback
,”
SAE
Paper No. 2003-01-3216.
46.
Saxena
,
S.
,
Chen
,
J.-Y.
, and
Dibble
,
R. W.
,
2011
, “
Increasing the Signal-to-Noise Ratio of Sparkplug Ion Sensors Through the Addition of a Potassium Acetate Fuel Additive
,”
Proc. Combust Inst.
,
33
(
2
), pp.
3081
3088
.
47.
Hunter Mack
,
J.
,
Butt
,
R. H.
,
Chen
,
Y.
,
Chen
,
J. Y.
, and
Dibble
,
R. W.
,
2016
, “
Experimental and Numerical Investigation of Ion Signals in Boosted HCCI Combustion Using Cesium and Potassium Acetate Additives
,”
Energy Convers. Manage.
,
108
, pp.
181
189
.
48.
Reinmann
,
R.
,
Saitzkoff
,
A.
, and
Mauss
,
F.
,
1997
, “
Local Air-Fuel Ratio Measurements Using the Spark Plug as an Ionization Sensor
,”
SAE
Paper No. 970856.
49.
Fialkov
,
A.
,
1997
, “
Investigations on Ions in Flames
,”
Prog. Energy Combust. Sci.
,
23
(
5–6
), pp.
399
528
.
50.
Bogin
,
G. E.
, Jr.
,
2008
, “
Characterization of Ion Production Using Gasoline, Ethanol, and N-Heptane in a Homogeneous Charge Compression Ignition (HCCI) Engine
,” Ph.D. thesis, Applied Science & Technology, University of California, CA, Berkeley.
51.
Kang
,
Z.
,
Wu
,
Z.
,
Zhang
,
Z.
,
Hu
,
Z.
,
Deng
,
J.
, and
Li
,
L.
,
2014
, “
Influence of Operation Parameters on the Interdependency Between Diesel Ion Current and Combustion Phase
,”
Trans. CSICE
,
32
(3), pp.
230
235
.
52.
Kang
,
Z.
,
Wu
,
Z.
,
Zhang
,
Z.
,
Hu
,
Z.
,
Deng
,
J.
, and
Li
,
L.
,
2016
, “
Experiment on the Effect of Common Rail Injection Parameters on Ion Current in a HSDI Diesel Engine
,”
Trans. CSICE
,
34
(
6
), pp.
530
536
.
You do not currently have access to this content.