Self-excited combustion instabilities in a high pressure, single-element, lean, premixed, natural gas (NG) dump-combustor are investigated. The combustor is designed for optical access and instrumented with high frequency pressure transducers at multiple axial locations. A parametric survey of operating conditions including inlet air temperature and equivalence ratio has been performed, resulting in a wide range of pressure fluctuation amplitudes (p) of the mean chamber pressure (pCH). Two representative cases, flames A and B with p/pCH=23% and p/pCH=12%, respectively, both presenting self-excited instabilities at the fundamental longitudinal (1L) mode of the combustion chamber, are discussed to study the coupling mechanism between flame-vortex interactions and the acoustic field in the chamber. 10 kHz OH*-chemiluminescence imaging was performed to obtain a map of the global heat release distribution. Phase conditioned and Rayleigh index analysis as well as dynamic mode decomposition (DMD) is performed to highlight the contrasting mechanisms that lead to the two distinct instability regimes. Flame interactions with shear layer vortex structures downstream of the backward-facing step of the combustion chamber are found to augment the instability magnitude. Flame A engages strongly in this coupling, whereas flame B is less affected and establishes a lower amplitude limit cycle.

References

1.
Yin
,
Z.
,
Nau
,
P.
,
Boxx
,
I.
, and
Meier
,
W.
,
2015
, “
Characterization of a Single-Nozzle Flox® Model Combustor Using KHZ Laser Diagnostics
,”
ASME
Paper No. GT2015-43282.
2.
Lammel
,
O.
,
Schütz
,
H.
,
Schmitz
,
G.
,
Lückerath
,
R.
,
Stöhr
,
M.
,
Noll
,
B.
,
Aigner
,
M.
,
Hase
,
M.
, and
Krebs
,
W.
,
2010
, “
Flox® Combustion at High Power Density and High Flame Temperatures
,”
ASME J. Eng. Gas Turbines Power
,
132
(
12
), p.
121503
.
3.
Lammel
,
O.
,
Stöhr
,
M.
,
Kutne
,
P.
,
Dem
,
C.
,
Meier
,
W.
, and
Aigner
,
M.
,
2012
, “
Experimental Analysis of Confined Jet Flames by Laser Measurement Techniques
,”
ASME J. Eng. Gas Turbines Power
,
134
(
4
), p.
041506
.
4.
Lammel
,
O.
,
Severin
,
M.
,
Ax
,
H.
,
Lückerath
,
R.
,
Tomasello
,
A.
,
Emmi
,
Y.
,
Noll
,
B.
,
Aigner
,
M.
, and
Panek
,
L.
,
2017
, “
High Momentum Jet Flames at Elevated Pressure—A: Experimental and Numerical Investigation for Different Fuels
,”
ASME
Paper No. GT2017-64615.
5.
Severin
,
M.
,
Lammel
,
O.
,
Ax
,
H.
,
Lückerath
,
R.
,
Meier
,
W.
,
Aigner
,
M.
, and
Heinze
,
J.
,
2017
, “
High Momentum Jet Flames at Elevated Pressure—B: Detailed Investigation of Flame Stabilization With Simultaneous PIV and OH-LIF
,”
ASME
Paper No. GT2017-64556.
6.
Hasemann
,
S.
,
Huber
,
A.
,
Naumann
,
C.
, and
Aigner
,
M.
,
2017
, “
Investigation of a Flox®-Based Combustor for a Micro Gas Turbine With Exhaust Gas Recirculation
,”
ASME
Paper No. GT2017-64396.
7.
Ducruix
,
S.
,
Schuller
,
T.
,
Durox
,
D.
, and
Candel
,
S.
,
2005
, “
Combustion Instability Mechanisms in Premixed Combustors
,”
Prog. Astronaut. Aeronaut.
,
210
, p.
179
.
8.
Zinn
,
B. T.
, and
Lieuwen
,
T. C.
,
2005
, “
Combustion Instabilities: Basic Concepts
,”
Prog. Astronaut. Aeronaut.
,
210
, p.
3
.
9.
Zukoski
,
E. E.
,
1985
, “
Combustion Instability Sustained by Unsteady Vortex Combustion
,”
AIAA
Paper No. 1985-1248.
10.
Poinsot
,
T. J.
,
Trouve
,
A. C.
,
Veynante
,
D. P.
,
Candel
,
S. M.
, and
Esposito
,
E. J.
,
1987
, “
Vortex-Driven Acoustically Coupled Combustion Instabilities
,”
J. Fluid Mech.
,
177
(
1
), pp.
265
292
.
11.
Venkataraman
,
K.
,
Preston
,
L.
,
Simons
,
D.
,
Lee
,
B.
,
Lee
,
J.
, and
Santavicca
,
D.
,
1999
, “
Mechanism of Combustion Instability in a Lean Premixed Dump Combustor
,”
J. Propul. Power
,
15
(
6
), pp.
909
918
.
12.
Stöhr
,
M.
,
Sadanandan
,
R.
, and
Meier
,
W.
,
2009
, “
Experimental Study of Unsteady Flame Structures of an Oscillating Swirl Flame in a Gas Turbine Model Combustor
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
2925
2932
.
13.
Hong
,
S.
,
Speth
,
R. L.
,
Shanbhogue
,
S. J.
, and
Ghoniem
,
A. F.
,
2013
, “
Examining Flow-Flame Interaction and the Characteristic Stretch Rate in Vortex-Driven Combustion Dynamics Using PIV and Numerical Simulation
,”
Combust. Flame
,
160
(
8
), pp.
1381
1397
.
14.
Sampath
,
R.
, and
Chakravarthy
,
S. R.
,
2016
, “
Investigation of Intermittent Oscillations in a Premixed Dump Combustor Using Time-Resolved Particle Image Velocimetry
,”
Combust. Flame
,
172
, pp.
309
325
.
15.
Lieuwen
,
T.
, and
Zinn
,
B. T.
,
1998
, “
The Role of Equivalence Ratio Oscillations in Driving Combustion Instabilities in Low NOx Gas Turbines
,”
Symp. (Int.) Combust.
,
27
(
2
), pp.
1809
1816
.
16.
Lieuwen
,
T.
,
Torres
,
H.
,
Johnson
,
C.
, and
Zinn
,
B. T.
,
2001
, “
A Mechanism of Combustion Instability in Lean Premixed Gas Turbine Combustors
,”
ASME J. Eng. Gas Turbines Power
,
123
(
1
), pp.
182
189
.
17.
Arndt
,
C. M.
,
Severin
,
M.
,
Dem
,
C.
,
Stöhr
,
M.
,
Steinberg
,
A. M.
, and
Meier
,
W.
,
2015
, “
Experimental Analysis of Thermo-Acoustic Instabilities in a Generic Gas Turbine Combustor by Phase-Correlated PIV, Chemiluminescence, and Laser Raman Scattering Measurements
,”
Exp. Fluids
,
56
(
4
), p.
69
.
18.
Poinsot
,
T.
,
2017
, “
Prediction and Control of Combustion Instabilities in Real Engines
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
1
28
.
19.
Meyer
,
S.
, and
Anderson
,
W.
,
2002
, “
Propulsion Test Facilities at Purdue University
,”
AIAA
Paper No. 2002-4280.
20.
Meyer
,
S.
, and
Pourpoint
,
T.
,
2005
, “
Development of the Purdue University Integrated Gas Turbine Combustion Facility
,”
AIAA
Paper No. 2005-3899.
21.
Slabaugh
,
C. D.
,
Pratt
,
A. C.
,
Lucht
,
R. P.
,
Meyer
,
S. E.
,
Benjamin
,
M.
,
Lyle
,
K.
, and
Kelsey
,
M.
,
2014
, “
The Development of an Optically Accessible, High-Power Combustion Test Rig
,”
Rev. Sci. Instrum.
,
85
(
3
), p.
035105
.
22.
Campa
,
G.
, and
Camporeale
,
S.
,
2009
, “
A Novel Fem Method for Predicting Thermoacoustic Combustion Instability
,”
European COMSOL Conference
, Milan, Italy, Oct. 14–16.https://uk.comsol.com/paper/a-novel-fem-method-for-predicting-thermoacoustic-combustion-instability-6924
23.
Campa
,
G.
, and
Camporeale
,
S. M.
,
2014
, “
Prediction of the Thermoacoustic Combustion Instabilities in Practical Annular Combustors
,”
ASME J. Eng. Gas Turbines Power
,
136
(
9
), p.
091504
.
24.
Camporeale
,
S.
,
Fortunato
,
B.
, and
Campa
,
G.
,
2011
, “
A Finite Element Method for Three-Dimensional Analysis of Thermo-Acoustic Combustion Instability
,”
ASME J. Eng. Gas Turbines Power
,
133
(
1
), p.
011506
.
25.
Mizutani
,
Y.
,
Nakabe
,
K.
,
Matsumoto
,
Y.
,
Saeki
,
T.
, and
Matsui
,
T.
,
1989
, “
Processing of Luminescent Radical Images for Flame Diagnostics
,”
JSME Int. J. Ser. 2, Fluids Eng. Heat Transfer, Power, Combust., Thermophys. Prop.
,
32
(
3
), pp.
455
463
.
26.
Lawn
,
C.
,
2000
, “
Distributions of Instantaneous Heat Release by the Cross-Correlation of Chemiluminescent Emissions
,”
Combust. Flame
,
123
(
1–2
), pp.
227
240
.
27.
Gounder
,
J. D.
,
Boxx
,
I.
,
Kutne
,
P.
,
Wysocki
,
S.
, and
Biagioli
,
F.
,
2014
, “
Phase Resolved Analysis of Flame Structure in Lean Premixed Swirl Flames of a Fuel Staged Gas Turbine Model Combustor
,”
Combust. Sci. Technol.
,
186
(
4–5
), pp.
421
434
.
28.
Stöhr
,
M.
,
Boxx
,
I.
,
Carter
,
C. D.
, and
Meier
,
W.
,
2012
, “
Experimental Study of Vortex-Flame Interaction in a Gas Turbine Model Combustor
,”
Combust. Flame
,
159
(
8
), pp.
2636
2649
.
29.
Dasch
,
C. J.
,
1992
, “
One-Dimensional Tomography: A Comparison of Abel, Onion-Peeling, and Filtered Backprojection Methods
,”
Appl. Opt.
,
31
(
8
), pp.
1146
1152
.
30.
Schmid
,
P. J.
,
2010
, “
Dynamic Mode Decomposition of Numerical and Experimental Data
,”
J. Fluid Mech.
,
656
, pp.
5
28
.
31.
Huang
,
C.
,
Anderson
,
W. E.
,
Harvazinski
,
M. E.
, and
Sankaran
,
V.
,
2013
, “
Analysis of Self-Excited Combustion Instability Using Decomposition Techniques
,”
AIAA
Paper No. 2013-1007.
32.
Huang
,
C.
,
Anderson
,
W. E.
,
Harvazinski
,
M. E.
, and
Sankaran
,
V.
,
2016
, “
Analysis of Self-Excited Combustion Instabilities Using Decomposition Techniques
,”
AIAA J.
,
54
(
9
), pp.
2791
2807
.
33.
Roy
,
S.
,
Hua
,
J.-C.
,
Barnhill
,
W.
,
Gunaratne
,
G. H.
, and
Gord
,
J. R.
,
2015
, “
Deconvolution of Reacting-Flow Dynamics Using Proper Orthogonal and Dynamic Mode Decompositions
,”
Phys. Rev. E
,
91
(
1
), p.
013001
.
You do not currently have access to this content.