In this paper, we present a method to determine the quantitative stability level of a lean-premixed combustor from dynamic pressure data. Specifically, we make use of the autocorrelation function of the dynamic pressure signal acquired in a combustor where a turbulent flame acts as a thermoacoustic driver. In the proposed approach, the unfiltered pressure signal including several modes is analyzed by an algorithm based on Bayesian statistics. For this purpose, a Gibbs sampler is used to calculate parameters like damping rates and eigenfrequencies in the form of probability density functions (PDF) by a Markov-chain Monte Carlo (MCMC) method. The method provides a robust solution algorithm for fitting problems without requiring initial values. A further advantage lies in the nature of the statistical approach since the results can be assessed regarding its quality by means of the PDF and its standard deviation for each of the obtained parameters. First, a simulation of a stochastically forced van-der-Pol oscillator with preset input values is carried out to demonstrate accuracy and robustness of the method. In this context, it is shown that, despite a large amount of uncorrelated background noise, the identified damping rates are in a good agreement with the simulated parameters. Second, this technique is applied to measured pressure data. By doing so, the combustor is initially operated under stable conditions before the thermal power is gradually increased by adjusting the fuel mass flow rate until a limit-cycle oscillation is established. It is found that the obtained damping rates are qualitatively in line with the amplitude levels observed during operation of the combustor.

References

References
1.
Rayleigh
, J. L.,
1878
, “
The Explanation of Certain Acoustical Phenomena
,”
Nature
,
18
(
4
), pp.
319
321
.
2.
Lieuwen
,
T. C.
,
2012
,
Unsteady Combustor Physics
,
Cambridge University Press
,
Cambridge, UK
.
3.
Wieber
,
P. R.
,
1966
, “
Acoustic Decay Coefficients of Simulated Rocket Combustors
,” NASA Lewis Research Center, Cleveland, OH, Technical Report No.
NASA TN D-3425
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19660014565.pdf
4.
Phillips
,
B.
, and
Morgan
,
C. J.
,
1967
, “
Mechanical Absorption of Acoustic Oscillations in Simulated Rocket Combustion Chambers
,” NASA Lewis Research Center, Cleveland, OH, Technical Report No.
NASA TN D-3792
.https://ntrs.nasa.gov/search.jsp?R=19670007361
5.
Sattelmayer
,
T.
,
Kathan
,
R.
,
Köglmeier
,
S.
,
Kaess
,
R.
, and
Nicole
,
A.
,
2015
, “
Validation of Transverse Instability Damping Computations for Rocket Engines
,”
J. Propul. Power
,
31
(
4
), pp.
1148
1158
.
6.
Kathan
,
R.
,
2013
, “
Verlustmechanismen in Raketenbrennkammern
,” Ph.D. thesis, Technische Universität München, Munich, Germany.
7.
Fiala
,
T.
,
Kathan
,
R.
, and
Sattelmayer
,
T.
,
2011
, “
Effective Stability Analysis of Liquid Rocket Combustion Chambers: Experimental Investigation of Damped Admittances
,” 62nd International Astronautical Congress, Cape Town, South Africa, Oct. 3–7, Paper No.
IAC11-C4.3.11
.https://www.researchgate.net/publication/264706972_Effective_Stability_Analysis_of_Liquid_Rocket_Combustion_Chambers_Experimental_Investigation_of_Damped_Admittances
8.
Bodisco
,
T.
,
Reeves
,
R.
,
Situ
,
R.
, and
Brown
,
R.
,
2012
, “
Bayesian Models for the Determination of Resonant Frequencies in a DI Diesel Engine
,”
Mech. Syst. Signal Process.
,
26
, pp.
305
314
.
9.
Wagner
,
M.
,
Jörg
,
C.
, and
Sattelmayer
,
T.
,
2013
, “
Comparison of the Accuracy of Time-Domain Measurement Methods for Combustor Damping
,”
ASME
Paper No. GT2013-94844.
10.
Stadlmair
,
N. V.
,
Wagner
,
M.
, and
Hirsch
,
C.
,
2015
, “
Experimentally Determining the Acoustic Damping Rates of a Combustor With a Swirl Stabilized Lean Premixed Flame
,”
ASME
Paper No. GT2015-42683.
11.
Palies
,
P.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2011
, “
Nonlinear Combustion Instability Analysis Based on the Flame Describing Function Applied to Turbulent Premixed Swirling Flames
,”
Combust. Flame
,
158
(
10
), pp.
1980
1991
.
12.
Silva
,
C. F.
,
Nicoud
,
F.
,
Schuller
,
T.
,
Durox
,
D.
, and
Candel
,
S.
,
2013
, “
Combining a Helmholtz Solver With the Flame Describing Function to Assess Combustion Instability in a Premixed Swirled Combustor
,”
Combust. Flame
,
160
(
9
), pp.
1743
1754
.
13.
Yi
,
T.
, and
Gutmark
,
E. J.
,
2008
, “
Online Prediction of the Onset of Combustion Instability Based on the Computation of Damping Ratios
,”
J. Sound Vib.
,
310
(
1–2
), pp.
442
447
.
14.
Nair
,
V.
, and
Sujith
,
R. I.
,
2014
, “
Multifractality in Combustion Noise: Predicting an Impending Combustion Instability
,”
J. Fluid Mech.
,
747
, pp.
635
655
.
15.
Lieuwen
,
T.
,
2005
, “
Online Combustor Stability Margin Assessment Using Dynamic Pressure Data
,”
ASME J. Eng. Gas Turbines Power
,
127
(
3
), pp.
478
482
.
16.
Lieuwen
,
T. C.
,
2005
, “
Systems and Methods for Detection of Combustor Stability Margin
,” U.S. Patent No.
US20050247064 A1
.https://www.google.com/patents/US20050247064
17.
Noiray
,
N.
, and
Schuermans
,
B.
,
2013
, “
Deterministic Quantities Characterizing Noise Driven Hopf Bifurcations in Gas Turbine Combustors
,”
Int. J. Non-Linear Mech.
,
50
, pp.
152
163
.
18.
Noiray
,
N.
, and
Schuermans
,
B. A.
,
2013
, “
On the Dynamic Nature of Azimuthal Thermoacoustic Modes in Annular Gas Turbine Combustion Chambers
,”
Proc. R. Soc. A
,
469
(2151), p. 20120535.
19.
Mejia
,
D.
,
Miguel-Brebion
,
M.
, and
Selle
,
L.
,
2016
, “
On the Experimental Determination of Growth and Damping Rates for Combustion Instabilities
,”
Combust. Flame
,
169
, pp.
287
296
.
20.
Geman
,
S.
, and
Geman
,
D.
,
1984
, “
Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
6
(6), pp.
721
741
.
21.
Metropolis
,
N.
,
Rosenbluth
,
A. W.
,
Rosenbluth
,
M. N.
,
Teller
,
A. H.
, and
Teller
,
E.
,
1953
, “
Equation of State Calculations by Fast Computing Machines
,”
J. Chem. Phys.
,
21
(
6
), pp.
1087
1092
.
22.
Hastings
,
W. K.
,
1970
, “
Monte Carlo Sampling Methods Using Markov Chains and Their Applications
,”
Biometrika
,
57
(1), pp. 97–109.https://academic.oup.com/biomet/article-abstract/57/1/97/2721936
23.
Culick
,
F. E.
,
2006
, “
Unsteady Motions in Combustion Chambers for Propulsion Systems
,” NATO Research and Technology Organization, Neuilly-sur-Seine, France, Technical Report No.
AG-AVT-039
.http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA466461
24.
Gardiner
,
C.
,
2009
,
Stochastic Methods
,
Springer
,
Berlin
.
25.
Ahlfors
,
L. V.
,
1966
,
Complex Analysis: An Introduction to the Theory of Analytic Functions of One Complex Variable
,
McGraw-Hill
, New York.
26.
Elster
,
C.
, and
Wübbeler
,
G.
,
2016
, “
Bayesian Regression versus Application of Least Squares—An Example
,”
Metrologia
,
53
(
1
), p. S10.
27.
Robert
,
C. P.
, and
Casella
,
G.
,
2004
,
Monte Carlo Statistical Methods
(Springer Texts in Statistics), Vol.
95
, Springer, New York.
28.
Rubinstein
,
R. Y.
, and
Kroese
,
D. P.
,
2011
,
Simulation and the Monte Carlo Method
,
Wiley
, Hoboken, NJ.
29.
Plummer
,
M.
,
2003
, “
JAGS: A Program for Analysis of Bayesian Graphical Models Using Gibbs Sampling
,” Third International Workshop on Distributed Statistical Computing (
DSC
), Vienna, Austria, Mar. 20–22, p. 125.https://www.r-project.org/conferences/DSC-2003/Proceedings/Plummer.pdf
30.
Noiray
,
N.
,
2016
, “
Linear Growth Rate Estimation From Dynamics and Statistics of Acoustic Signal Envelope in Turbulent Combustors
,”
ASME
Paper No. GT2016-58169.
31.
Lieuwen
,
T. C.
,
2003
, “
Statistical Characteristics of Pressure Oscillations in a Premixed Combustor
,”
J. Sound Vib.
,
260
(1), pp.
3
17
.
32.
Mordechai
,
S.
,
2011
,
Applications of Monte Carlo Method in Science and Engineering
,
InTech
,
Rijeka, Croatia
.
33.
Noiray
,
N.
, and
Denisov
,
A.
,
2017
, “
A Method to Identify Thermoacoustic Growth Rates in Combustion Chambers From Dynamic Pressure Time Series
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3843
3850
.
34.
Stadlmair
,
N. V.
,
Mohammadzadeh Keleshtery
,
P.
,
Zahn
,
M.
, and
Sattelmayer
,
T.
,
2017
, “
Impact of Water Injection on Thermoacoustic Modes in a Lean Premixed Combustor Under Atmospheric Conditions
,”
ASME
Paper No. GT2017-63342.
35.
Betz
,
M.
,
Zahn
,
M.
,
Wagner
,
M.
,
Stadlmair
,
N. V.
,
Schulze
,
M.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2017
, “
Impact of Damper Parameters on the Stability Margin of an Annular Combustor Test Rig
,”
ASME
Paper No. GT2017-64239.
36.
Hummel
,
T.
,
Berger
,
F. M.
,
Stadlmair
,
N. V.
, and
Schuermans
,
B.
,
2017
, “
Extraction of Linear Growth and Damping Rates of High-Frequency Thermoacoustic Oscillations From Time Domain Data
,”
ASME
Paper No. GT2017-64233.
You do not currently have access to this content.