Lean blowout (LBO) prediction based on the local parameters in the laboratory toroidal jet-stirred reactor (TJSR) is investigated. The reactor operated on methane is studied using three-dimensional computational fluid dynamics (CFD); the results are compared with the experimental data. Skeletal chemical kinetic mechanism with the eddy dissipation concept (EDC) model is used. Flow bifurcation in the radial (poloidal) plane due to the interaction between counter-rotating vortices creates one dominating poloidal recirculation zone (PRZ) and one weaker toroidal recirculation zone (TRZ). The Damkohler (Da) number in the reactor is the highest in the stabilization vortex; it varies from about Da ∼ 2 at ϕ = 0.55 to Da ∼ 0.2–0.3 at LBO conditions. Due to the reduced turbulent dissipation rate in PRZ, the Da number is an order of magnitude higher than in TRZ. The global blowout event is predicted at the local Da = 0.2 in PRZ. Local blowout events in the regions of low Da can lead to flame instability and to a global flame blowout at a higher fuel–air ratio than predicted by the CFD. Local Da nonuniformity can be used for optimization and analysis of combustion system stability. Further research in the process parameterization and application to the practical combustion system is needed.

References

References
1.
Herbinet
,
O.
, and
Dayma
,
G.
,
2013
, “
Jet-Stirred Reactors
,”
Cleaner Combustion
,
Springer
,
London
, pp.
183
210
.
2.
Glassman
,
I.
, and
Yetter
,
R. A.
,
2008
,
Combustion
,
4th ed.
,
Academic Press
,
Cambridge, MA
.
3.
Turns
,
S. R.
,
2012
,
An Introduction to Combustion: Concepts and Applications
,
3rd ed.
,
McGraw-Hill
,
New York
.
4.
Schefer
,
R. W.
,
2003
, “
Hydrogen Enrichment for Improved Lean Flame Stability
,”
Int. J. Hydrogen Energy
,
28
(
10
), pp.
1131
1141
.
5.
Burbano
,
H. J.
,
Pareja
,
J.
, and
Amell
,
A. A.
,
2011
, “
Laminar Burning Velocities and Flame Stability Analysis of H2/CO/Air Mixtures With Dilution of N2 and CO2
,”
Int. J. Hydrogen Energy
,
36
(
4
), pp.
3232
3242
.
6.
Muruganandam
,
T.
,
Nair
,
S.
,
Scarborough
,
D.
,
Neumeier
,
Y.
,
Jagoda
,
J.
,
Lieuwen
,
T.
,
Seitzman
,
J.
, and
Zinn
,
B.
,
2005
, “
Active Control of Lean Blowout for Turbine Engine Combustors
,”
J. Propul. Power
,
21
(
5
), pp.
807
814
.
7.
Prathap
,
C.
,
Ray
,
A.
, and
Ravi
,
M. R.
,
2012
, “
Effects of Dilution With Carbon Dioxide on the Laminar Burning Velocity and Flame Stability of H2-CO Mixtures at Atmospheric Condition
,”
Combust. Flame
,
159
(
2
), pp.
482
492
.
8.
Stohr
,
M.
,
Boxx
,
I.
,
Carter
,
C.
, and
Meier
,
W.
,
2011
, “
Dynamics of Lean Blowout of a Swirl-Stabilized Flame in a Gas Turbine Model Combustor
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
2953
2960
.
9.
Hu
,
B.
,
Huang
,
Y.
, and
Xu
,
J.
,
2014
, “
A Hybrid Semi-Empirical Model for Lean Blow-Out Limit Predictions of Aero-Engine Combustors
,”
ASME J. Eng. Gas Turbines Power
,
137
(
3
), p.
031502
.
10.
Radhakrishnan
,
K.
,
Heywood
,
J. B.
, and
Tabaczynski
,
R. J.
,
1981
, “
Premixed Turbulent Flame Blowoff Velocity Correlation Based on Coherent Structures in Turbulent Flows
,”
Combust. Flame
,
42
, pp.
19
33
.
11.
Sturgess
,
G. J.
,
Sloan
,
D. G.
,
Lesmerises
,
A. L.
,
Heneghan
,
S. P.
, and
Ballal
,
D. R.
,
1992
, “
Design and Development of a Research Combustor for Lean Blowout Studies
,”
ASME J. Eng. Gas Turbines Power
,
114
(
1
), pp.
13
19
.
12.
Kim
,
W.-W.
,
Lienau
,
J. J.
,
Slooten
,
P. R. V.
,
Colket
,
M. B.
,
Malecki
,
R. E.
, and
Syed
,
S.
,
2004
, “
Towards Modeling Lean Blow Out in Gas Turbine Flameholder Applications
,”
ASME J. Eng. Gas Turbines Power
,
128
(
1
), pp.
40
48
.
13.
Novosselov
,
I. V.
,
Malte
,
P. C.
,
Yuan
,
S.
,
Srinivasan
,
R.
, and
Lee
,
J. C. Y.
,
2006
, “
Chemical Reactor Network Application to Emissions Prediction for Industrial DLE Gas Turbine
,”
ASME
Paper No. GT2006-90282.
14.
Nanduri
,
J. R.
,
Parsons
,
D. R.
,
Yilmaz
,
S. L.
,
Celik
,
I. B.
, and
Strakey
,
P. A.
,
2010
, “
Assessment of RANS-Based Turbulent Combustion Models for Prediction of Emissions From Lean Premixed Combustion of Methane
,”
Combust. Sci. Technol.
,
182
(
7
), pp.
794
821
.
15.
Hanjalic
,
K.
, and
Launder
,
B. E.
,
1972
, “
A Reynolds Stress Model of Turbulence and Its Application to Thin Shear Flows
,”
J. Fluid Mech.
,
52
(
4
), pp.
609
638
.
16.
Launder
,
B. E.
,
Reece
,
G. J.
, and
Rodi
,
W.
,
1975
, “
Progress in the Development of a Reynolds-Stress Turbulence Closure
,”
J. Fluid Mech.
,
68
(
3
), pp.
537
566
.
17.
Durbin
,
P. A.
,
1993
, “
A Reynolds Stress Model for Near-Wall Turbulence
,”
J. Fluid Mech.
,
249
(
1
), pp.
465
498
.
18.
Wallin
,
S.
, and
Johansson
,
A. V.
,
2000
, “
An Explicit Algebraic Reynolds Stress Model for Incompressible and Compressible Turbulent Flows
,”
J. Fluid Mech.
,
403
, pp.
89
133
.
19.
Magnussen
,
B. F.
,
1981
, “
On the Structure of Turbulence and a Generalized Eddy Dissipation Concept for Chemical Reaction in Turbulent Flow
,”
AIAA
Paper No. A81-37570.
20.
Ertesvag
,
I. S.
, and
Magnussen
,
B. F.
,
2000
, “
The Eddy Dissipation Turbulence Energy Cascade Model
,”
Combust. Sci. Technol.
,
159
(
1
), pp.
213
235
.
21.
Magnussen
,
B. F.
,
2005
, “
The Eddy Dissipation Concept: A Bridge Between Science and Technology
,”
ECCOMAS Thematic Conference on Computational Combustion
, Lisbon, Portugal, June 21–24, pp. 21–24.http://folk.ntnu.no/ivarse/edc/BFM_ECOMAS2005_Lisboa.pdf
22.
Karalus
,
M. F.
,
Fackler
,
K. B.
,
Novosselov
,
I. V.
,
Kramlich
,
J. C.
, and
Malte
,
P. C.
,
2013
, “
A Skeletal Mechanism for the Reactive Flow Simulation of Methane Combustion
,”
ASME
Paper No. GT2013-95904.
23.
Karalus
,
M. F.
,
Fackler
,
K. B.
,
Novosselov
,
I. V.
,
Kramlich
,
J. C.
, and
Malte
,
P. C.
,
2012
, “
Characterizing the Mechanism of Lean Blowout for a Recirculation-Stabilized Premixed Hydrogen Flame
,”
ASME
Paper No. GT2012-68060.
24.
Ayed
,
A. H.
,
Kusterer
,
K.
,
Funke
,
H. H.-W.
,
Keinz
,
J.
,
Striegan
,
C.
, and
Bohn
,
D.
,
2015
, “
Experimental and Numerical Investigations of the Dry-Low-NOx Hydrogen Micromix Combustion Chamber of an Industrial Gas Turbine
,”
Propul. Power Res.
,
4
(
3
), pp.
123
131
.
25.
Nenniger
,
J. E.
,
Kridiotis
,
A.
,
Chomiak
,
J.
,
Longwell
,
J. P.
, and
Sarofim
,
A. F.
,
1984
, “
Characterization of a Toroidal Well Stirred Reactor
,”
Symp. (Int.) Combust.
,
20
(
1
), pp.
473
479
.
26.
Clarke
,
A. E.
,
Harrison
,
A. J.
, and
Odgers
,
J.
,
1958
, “
Combustion Stability in a Spherical Combustor
,”
Symp. (Int.) Combust.
,
7
(
1
), pp.
664
673
.
27.
Clarke
,
A. E.
,
Odgers
,
J.
, and
Ryan
,
P.
,
1961
, “
Further Studies of Combustion Phenomena in a Spherical Combustor
,”
Symp. (Int.) Combust.
,
8
(
1
), pp.
982
994
.
28.
Clarke
,
A. E.
,
Odgers
,
J.
,
Stringer
,
F. W.
, and
Harrison
,
A. J.
,
1965
, “
Combustion Processes in a Spherical Combustor
,”
Symp. (Int.) Combust.
,
10
(
1
), pp.
1151
1166
.
29.
Odgers
,
J.
, and
Carrier
,
C.
,
1973
, “
Modelling of Gas Turbine Combustors; Considerations of Combustion Efficiency and Stability
,”
ASME J. Eng. Power
,
95
(
2
), pp.
105
113
.
30.
Longwell
,
J. P.
, and
Bar-Ziv
,
E.
,
1989
, “
Modeling of Inhomogeneities in the Toroidal Jet-Stirred Reactor
,”
Combust. Flame
,
78
(
1
), pp.
99
119
.
31.
Barat
,
R. B.
,
1992
, “
Jet-Stirred Combustor Behavior Near Blowout: Observations and Implications
,”
Combust. Sci. Technol.
,
84
(
1
), pp.
187
197
.
32.
Vijlee
,
S. Z.
,
Kramlich
,
J. C.
,
Mescher
,
A. M.
,
Stouffer
,
S. D.
, and
O'Neil-Abels
,
A. R.
,
2013
, “
Characterizing Combustion of Synthetic and Conventional Fuels in a Toroidal Well Stirred Reactor
,”
ASME
Paper No. GT2013-94944.
33.
Vijlee
,
S. Z.
,
Novosselov
,
I. V.
, and
Kramlich
,
J. C.
,
2015
, “
Effects of Composition on the Flame Stabilization of Alternative Aviation Fuels in a Toroidal Well Stirred Reactor
,”
ASME
Paper No. GT2015-43014.
34.
Kalitzin
,
G.
,
Medic
,
G.
,
Laccarino
,
G.
, and
Durbin
,
P.
,
2005
, “
Near-Wall Behavior of RANS Turbulence Models and Implications for Wall Functions
,”
J. Comput. Phys.
,
204
(
1
), pp.
265
291
.
35.
Mills
,
A. F.
,
1999
,
Basic Heat and Mass Transfer
,
Pearson College Div
,
Upper Saddle River, NJ
.
36.
Vijlee
,
S. Z.
,
2014
, “
Effects of Fuel Composition on Combustion Stability and NOX Emissions for Traditional and Alternative Jet Fuels
,”
Ph.D. thesis
, University of Washington, Seattle, WA.https://digital.lib.washington.edu/researchworks/handle/1773/26052
37.
FLUENT
,
2009
, “
Theory Guide 12.0
,” ANSYS Inc., Canonsburg, PA, p.
321
.
38.
Vagelopoulos
,
C. M.
, and
Egolfopoulos
,
F. N.
,
1994
, “
Laminar Flame Speeds and Extinction Strain Rates of Mixtures of Carbon Monoxide With Hydrogen, Methane, and Air
,”
Symp. (Int.) Combust.
,
25
(
1
), pp.
1317
1323
.
39.
Dirrenberger
,
P.
,
Gall
,
H. L.
,
Bounaceur
,
R.
,
Herbinet
,
O.
,
Glaude
,
P.-A.
,
Konnov
,
A.
, and
Battin-Leclerc
,
F.
,
2011
, “
Measurements of Laminar Flame Velocity for Components of Natural Gas
,”
Energy Fuels
,
29
(
9
), pp.
3875
3884
.
40.
Koutmos
,
P.
,
1999
, “
A Damkohler Number Description of Local Extinction in Turbulent Methane Jet Diffusion Flames
,”
Fuel
,
78
(
5
), pp.
623
626
.
You do not currently have access to this content.