Dual-fuel (DF) engines offer great fuel flexibility since they can either run on gaseous or liquid fuels. In the case of diesel pilot-ignited DF engines, the main source of energy is provided by gaseous fuel, whereas the diesel fuel acts only as an ignition source. Therefore, a proper auto-ignition of the pilot fuel is of utmost importance for combustion in DF engines. However, auto-ignition of the pilot fuel suffers from lower compression temperatures of Miller or Atkinson valve timings. These valve timings are applied to increase efficiency and lower nitrogen oxide (NOx) engine emissions. In order to improve the ignition, it is necessary to understand which parameters influence the ignition in DF engines. For this purpose, experiments were conducted and the influence of parameters, such as injection pressure, pilot fuel quantity, compression temperature, and air–fuel (A/F) equivalence ratio of the homogenous natural gas–air mixture were investigated. The experiments were performed on a periodically chargeable combustion cell using optical high-speed recordings and thermodynamic measurement techniques for pressure and temperature. The study reveals that the quality of the diesel pilot ignition in terms of short ignition delay and a high number of ignited sprays significantly depends on the injection parameters and operating conditions. In most cases, the pilot fuel suffers from too high dilution due to its small quantity and long ignition delays. This results in a small number of ignited sprays and consequently leads to longer combustion durations. Furthermore, the experiments confirm that the natural gas of the background mixture influences the auto-ignition of the diesel pilot oil.

References

References
1.
Diesel
,
M. A. N.
, and
Turbo
,
S. E.
, 2016, “Marktprognose Für Marine Und Poweranwendung Von Diesel- Und DF-Motoren Für Eine Motorbaureihe: Quellen: IHS WRS, World Marine, Cruise Fleet Listmodels,
DGTW, IESG
,” pp. 1–2.
2.
Tomita
,
E.
,
Kawahara
,
N.
,
Piao
,
Z.
, and
Yamaguchi
,
R.
,
2002
, “
Effects of EGR and Early Injection of Diesel Fuel on Combustion Characteristics and Exhaust Emissions in a Methane Dual Fuel Engine
,”
SAE
Paper 2002-01-2723.
3.
Nieman
,
D. E.
,
Dempsey
,
A. B.
, and
Reitz
,
R. D.
,
2012
, “
Heavy-Duty RCCI Operation Using Natural Gas and Diesel
,”
SAE Int. J. Engines
,
5
(
2
), pp.
270
285
.
4.
Srinivasan
,
K. K.
,
Krishnan
,
S. R.
, and
Midkiff
,
K. C.
,
2006
, “
Improving Low Load Combustion, Stability, and Emissions in Pilot-Ignited Natural Gas Engines
,”
Proc. Inst. Mech. Eng., Part D
,
220
(
2
), pp.
229
239
.
5.
Unfug
,
F.
,
2016
, “
Investigation on Dual Fuel Engine Gas Combustion Using Tomographic In-Cylinder Measurement Technique and Simultaneous High Speed OH-Chemiluminescence Visualization
,”
SAE
Paper No. 2016-01-2308.
6.
IMO
,
2014
, “
The International Convention for the Prevention of Pollution From Ships, 1973, as Modified by the Protocol of 1978 Relating Thereto Resolution MEPC 251 (66)
,” International Maritime Organization, London, pp. 10–14.
7.
Troberg
,
M.
, and
Delneri
,
D.
,
2010
, “
Roadmap Zur Erfüllung Der Tier-III-Abgasnorm Für Schiffsmotoren
,”
Motortech Z.
,
71
(
6
), pp.
394
401
.
8.
Karim
,
G. A.
,
2015
,
Dual-Fuel Diesel Engines
,
CRC Press
,
Boca Raton, FL
.
9.
MAN Marine Engines & Systems
,
2016
, “
MAN 35/44 DF: Dual Fuel Flexibility
,” MAN Marine Engines & Systems, Augsburg, Germany, accessed May 7, 2018, http://marine.man.eu/four-stroke/engines/l35-44df/
10.
HdT
,
E. C. P.
, ed.,
2017
,
Analysis and Comparison of the Combustion of a Lean Natural Gas/Air Mixture in a Gas-Engine With Scavenged Pre-Chamber and a Dual-Fuel Engine With Pilot Injection
, pp. 105–118.
11.
Mbarawa
,
M.
,
2003
, “
A Correlation for Estimation of Ignition Delay of Dual Fuel Combustion Based on Constant Volume Combustion Vessel Experiments
,”
R&D J.
,
19
(1), pp.
17
22
.
12.
Hanson
,
R. M.
,
Kokjohn
,
S. L.
,
Splitter
,
D. A.
, and
Reitz
,
R. D.
,
2010
, “
An Experimental Investigation of Fuel Reactivity Controlled PCCI Combustion in a Heavy-Duty Engine
,”
SAE Int. J. Engines
,
3
(
1
), pp.
700
716
.
13.
Eisen
,
S.
,
Ofner
,
B.
, and
Mayinger
,
F.
,
2001
, “
Schnelle Kompressionsmaschine: Eine Alternative Zum Transparentmotor?
,”
Motortech. Z.
,
62
(
9
), pp.
680
685
.
14.
Eisen
,
S. M.
,
2003
, “
Visualisierung der dieselmotorischen Verbrennung in einer schnellen Kompressionsmaschine
,” Ph.D. dissertation, Lehrstuhl für Thermodynamik, München, Germany.
15.
Dorer
,
F. S.
,
2000
, “
Kompressionsmaschine zur Simulation von Brennraumvorgängen in Wasserstoff-Großdieselmotoren
,” Ph.D. dissertation, Lehrstuhl für Thermodynamik, München, Germany.
16.
Prechtl
,
P.
,
2000
, “
Analyse und Optimierung der innermotorischen Prozesse in einem Wasserstoff-Dieselmotor
,” Ph.D. dissertation, Lehrstuhl für Thermodynamik, München, Germany.
17.
Heinz
,
C.
,
2011
, “
Untersuchung eines Vorkammerzündkonzepts für Großgasmotoren in einer Hochdruckzelle mit repetierender Verbrennung
,” Ph.D. dissertation, Lehrstuhl für Thermodynamik, München, Germany.
18.
Kammerstätter
,
S.
,
2012
, “
Verbrennungsablauf und Schadstoffbildung in Erdgas-Großmotoren mit Vorkammerzündung
,” Ph.D. dissertation, Lehrstuhl für Thermodynamik, München, Germany.
19.
Kammerstätter
,
S.
,
Sattelmayer
,
T.
, and
Sunday
,
2012
, “
Influence of Prechamber-Geometry and Operating-Parameters on Cycle-to-Cycle Variations in Lean Large-Bore Natural Gas Engines
,”
ASME
Paper No. ICES2012-81180.
20.
Heinz
,
C.
,
Kammerstätter
,
S.
, and
Sattelmayer
,
T.
,
2012
, “
Vorkammerkonzepte Für Stationär Betriebene Grossgasmotoren
,”
Motortech. Z.
, (
1
), pp.
76
81
.
You do not currently have access to this content.