The role of absolute pressure in deposition testing is reviewed from first principles. Relevant dimensionless parameters for deposition testing are developed and dynamic similarity conditions are assessed in detail. Criteria for establishing appropriate conditions for laboratory studies of deposition are established pursuant to the similarity variables. The role of pressure is particularly singled out for consideration relative to other variables such as temperature, particle size, and test article geometry/scaling. A case study is presented for deposition in a generic array of impinging jets. A fixed quantity (2 g) of 0–10 μ Arizona road dust (ARD) is delivered to the impingement array at three different temperatures (290, 500, and 725 K) and at fixed pressure ratio. Deposition results are presented for operating pressures from 1 to 15 atm. Surface scans show that the height of deposit cones at the impingement sites decreases with increasing pressure at constant temperature and pressure ratio. This reduction is explained by the lower “effective” Stokes number that occurs at high particle Reynolds numbers, yielding fewer particle impacts at high pressure. A companion computational fluid dynamics (CFD) study identifies the additional role of Reynolds number in both the impingement hole losses and the shear layer thickness.

References

References
1.
Gbadebo
,
S. A.
,
Hynes
,
T. P.
, and
Cumpsty
,
N. A.
,
2004
, “
Influence of Surface Roughness on Three-Dimensional Separation in Axial Compressors
,”
ASME J. Turbomach.
,
126
(
4
), pp.
455
463
.
2.
Tarabrin
,
A. P.
,
Schurovsky
,
V. A.
,
Boldrov
,
A. I.
, and
Stalder
,
J. P.
,
1998
, “
Influence of Axial Compressor Fouling on Gas Turbine Unit Performance Based on Different Schemes and With Different Initial Parameters
,”
ASME
Paper No. 98-GT-416.
3.
Forsyth
,
P.
,
Gillespie
,
D. R. H.
,
McGilvray
,
M.
, and
Galoul
,
V.
,
2016
, “
Validation and Assessment of the Continuous Random Walk Model for Particle Deposition in Gas Turbine Engines
,”
ASME
Paper No. GT2016-57332.
4.
Aldi
,
N.
,
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Suman
,
A.
,
2016
, “
An Innovative Method for the Evaluation of Particle Deposition Accounting for Rotor Stator Interaction
,”
ASME
Paper No. GT2016-57803.
5.
Borello
,
D.
,
Cardillo
,
L.
,
Corsini
,
A.
,
Delibria
,
G.
,
Rispoli
,
F.
,
Salvagni
,
A.
,
Sheard
,
A. G.
, and
Venturini
,
P.
,
2016
, “
Modelling of Particle Transport, Erosion, and Deposition in Power Plant Gas Paths
,”
ASME
Paper No. GT2016-57984.
6.
Tabakoff
,
W.
,
1991
, “
Measurements of Particles Rebound Characteristics on Materials Used in Gas Turbines
,”
J. Propul.
,
7
(
5
), pp.
805
114
.
7.
Tabakoff
,
W.
,
Hamed
,
A.
, and
Murugan
,
D. M.
,
1996
, “
Effect of Target Materials on the Particle Restitution Characteristics for Turbomachinery Application
,”
J. Propul. Power
,
12
(
2
), pp.
260
266
.
8.
Dunn
,
M. G.
,
2012
, “
Operation of Gas Turbine Engines in an Environment Contaminated With Volcanic Ash
,”
ASME J. Turbomach.
,
134
(
5
), p.
051001
.
9.
Kim
,
J.
,
Dunn
,
M. G.
,
Baran
,
A. J.
,
Wade
,
D. P.
, and
Tremba
,
E. L.
,
1993
, “
Deposition of Volcanic Materials in the Hot Sections of Two Gas Turbine Engines
,”
ASME J. Eng. Gas Turbines Power
,
115
, pp.
641
651
.
10.
Lawson
,
S. A.
,
Thole
,
K. A.
,
Okita
,
Y.
, and
Nakamata
,
C.
,
2012
, “
Simulations of Multiphase Particle Deposition on a Showerhead With Staggered Film-Cooling Holes
,”
ASME J. Turbomach.
,
134
(
5
), p.
051041
.
11.
Bunker
,
R. S.
,
2000
, “
Effect of Partial Coating Blockage on Film Cooling Effectiveness
,”
ASME
Paper No. 2000-GT-0244.
12.
Lewis
,
S.
,
Barker
,
B.
,
Bons
,
J. P.
,
Ai
,
W.
, and
Fletcher
,
T. H.
,
2011
, “
Film Cooling Effectiveness and Heat Transfer Near Deposit-Laden Film Holes
,”
ASME J. Turbomach.
,
133
(
3
), p.
031003
.
13.
Sundaram
,
N.
, and
Thole
,
K. A.
,
2007
, “
Effects of Surface Deposition, Hole Blockage, and Thermal Barrier Coating Spallation on Vane Endwall Film Cooling
,”
ASME J. Turbomach.
,
129
(
3
), pp.
599
607
.
14.
Cosher
,
C. R.
, and
Dunn
,
M.
,
2016
, “
Comparison of the Sensitivity to Foreign Particle Ingestion of the GE-F101 and P/W-F100 Engines to Modern Aircraft Engines
,”
ASME
Paper No. GT2016-56052.
15.
Cunningham
,
E.
,
1910
, “
On the Velocity of Steady Fall of Spherical Particles Through Fluid Medium
,”
Proc. Roy. Soc. A
,
83
(
1910
), p.
357
.
16.
Prenter
,
R.
,
Ameri
,
A.
, and
Bons
,
J. P.
,
2017
, “
Computational Simulation of Deposition in a Cooled High-Pressure Turbine Stage With Hot Streaks
,”
ASME J. Turbomach.
,
139
(
9
), p.
091005
.
17.
Dowd
,
C.
,
Tafti
,
D.
, and
Yu
,
K.
,
2017
, “
Sand Transport and Deposition in Rotating Two-Pass Ribbed Duct With Coriolis and Centrifugal Buoyancy Forces at Re=100,000
,”
ASME
Paper No. GT2017-63167.
18.
Saffman
,
P. G.
,
1965
, “
The Lift on a Small Sphere in a Slow Shear Flow
,”
J. Fluid Mech.
,
22
, pp.
385
400
.
19.
Chang
,
Y. P.
,
Tsai
,
R.
, and
Sui
,
F. M.
,
1999
, “
The Effect of Thermophoresis on Particle Deposition From a Mixed Convection Flow Onto a Vertical Flat Plate
,”
J. Aerosol Sci.
,
30
(
10
), pp.
1363
1378
.
20.
Whitaker
,
S. M.
,
Prenter
,
R.
, and
Bons
,
J. P.
,
2015
, “
The Effect of Freestream Turbulence on Deposition for Nozzle Guide Vanes
,”
ASME J. Turbomach.
,
137
(
12
), p.
121001
.
21.
Bowling
,
R. A.
,
1988
, “
A Theoretical Review of Particle Adhesion
,”
Particles on Surfaces I
,
K. L.
Mittal
, ed.,
Plenum Press
,
New York
.
22.
Bons
,
J. P.
,
Prenter
,
R.
, and
Whitaker
,
S.
,
2017
, “
A Simple Physics-Based Model for Particle Rebound and Deposition in Turbomachinery
,”
ASME J. Turbomach.
,
139
(
8
), p.
081009
.
23.
Whitaker
,
S.
,
Peterson
,
B.
,
Miller
,
A.
, and
Bons
,
J. P.
,
2016
, “
The Effect of Particle Loading, Size, and Temperature on Deposition in a Vane Leading Edge Impingement Cooling Geometry
,”
ASME
Paper No. GT2016-57413.
24.
White
,
F. M.
,
2006
,
Viscous Fluid Flow
,
3rd ed.
,
McGraw-Hill
, New York.
25.
Donkelaar
,
A.
,
Martin
,
R.
,
Brauer
,
M.
,
Kahn
,
R.
,
Verduzco
,
C.
, and
Villenueve
,
P.
,
2010
, “
Global Estimates of Ambient Fine Particulate Matter Concentrations From Satellite-Based Aerosol Optical Depth: Development and Application
,”
Environ. Health Perspect.
,
118
(
6
), pp.
847
855
.
26.
Israel
,
R.
, and
Rosner
,
D. E.
,
1982
, “
Use of a Generalized Stokes Number to Determine the Aerodynamic Capture Efficiency of Non-Stokesian Particles From a Compressible Gas Flow
,”
Aerosol. Sci. Tech.
,
2
(
1
), pp.
45
51
.
27.
Lichtarowicz
,
A.
,
Duggins
,
R. K.
, and
Markland
,
E.
,
1965
, “
Discharge Coefficients for Incompressible Non-Cavitating Flow Through Long Orifices
,”
J. Mech. Eng. Sci.
,
7
(
2
), pp.
210
219
.
You do not currently have access to this content.