The effect of engine degradation in the form of compressor fouling and compressor turbine degradation on the creep life consumption of the high-pressure (HP) turbine blades of an LM2500+ industrial gas turbine engine is investigated in this work. The degradations are flow capacity degradation and isentropic efficiency degradation. An engine model was created in Cranfield gas turbine performance and diagnostics software, pythia. Blade thermal and stress models were developed together with the Larson–Miller parameter (LMP) method for creep life analysis. The percentage decreases in creep life due to each effect were examined. For the engine considered, compressor degradation has more impact on engine creep life toward peak power operation, while HP turbine degradation has more impact on creep life at lower power levels. The results of this work will give engine operators an idea of how engine components creep life is consumed and make reasonable decisions concerning operating at part loads.

References

References
1.
Vaezi
,
M.
, and
Soleymani
,
M.
,
2009
, “
Creep Life Prediction of Inconel 738 Gas Turbine Blade
,”
J. Appl. Sci.
,
9
(
10
), pp.
1950
1955
.
2.
Marahleh
,
G.
,
Kheder
,
A. R. I.
, and
Hamad
,
H. F.
,
2006
, “
Creep-Life Prediction of Service-Exposed Turbine Blades
,”
Mater. Sci.
,
42
(
4
), pp.
476
481
.
3.
Liu
,
Z.
,
Mavris
,
D. N.
, and
Volovoi
,
V.
,
2001
, “
Creep Life Prediction of Gas Turbine Components Under Varying Operating Conditions
,”
ASME
Paper No. JPGC2001/PWR-19163.https://smartech.gatech.edu/bitstream/handle/1853/6308/JPGC-2001-PWR-19163.pdf?sequence=1&isAllowed=y
4.
Kong
,
Z.
, and
Li
,
S.
,
2013
, “
Effects of Temperature and Stress on the Creep Behavior of a Ni 3 Al Base Single Crystal Alloy
,”
Prog. Nat. Sci. Mater. Int.
,
23
(
2
), pp.
205
210
.
5.
Terada
,
Y.
, and
Sato
,
T.
,
2010
, “
Assessment of Creep Rupture Life of Heat Resistant Mg–Al–Ca Alloys
,”
J. Alloys Compd.
,
504
(
1
), pp.
261
264
.
6.
Brun
,
K.
,
Grimley
,
T. A.
,
Foiles
,
W. C.
, and
Kurz
,
R.
,
2015
, “
Experimental Evaluation of the Effectiveness of Online Water-Washing in Gas Turbine Compressors
,”
ASME J. Eng. Gas Turbines Power
,
137
(
4
), p. 042605.
7.
Kurz
,
R.
, and
Brun
,
K.
,
2012
, “
Fouling Mechanisms in Axial Compressors
,”
ASME J. Eng. Gas Turbines Power
,
134
(
3
), p. 032401.
8.
Ogbonnaya
,
E. A.
,
2011
, “
Gas Turbine Performance Optimization Using Compressor Online Water Washing Technique
,”
Sci. Res.
,
3
(
5
), pp.
500
507
.
9.
Schneider
,
E.
,
Demircioglu
,
S.
,
Franco
,
S.
, and
Therkorn
,
D.
,
2009
, “
Analysis of Compressor On-Line Washing to Optimize Gas Turbine Power Plant Performance
,”
ASME
Paper No. GT2009-59356.
10.
Boyce
,
M. P.
, and
Gonzalez
,
F.
,
2007
, “
A Study of on-Line and Off-Line Turbine Washing to Optimize the Operation of a Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
,
129
(
1
), pp.
114
122
.
11.
Li
,
Y. G.
,
2010
, “
Gas Turbine Performance and Health Status Estimation Using Adaptive Gas Path Analysis
,”
ASME J. Eng. Gas Turbines Power
,
132
(
4
), p. 041701.
12.
Marinai
,
L.
,
Probert
,
D.
, and
Singh
,
R.
,
2004
, “
Prospects for Aero Gas-Turbine Diagnostics: A Review
,”
Appl. Energy
,
79
(
1
), pp.
109
126
.
13.
Joly
,
R. B.
,
Ogaji
,
S. O. T.
,
Singh
,
R.
, and
Probert
,
S. D.
,
2004
, “
Gas-Turbine Diagnostics Using Artificial Neural-Networks for a High Bypass Ratio Military Turbofan Engine
,”
Appl. Energy
,
78
(
4
), pp.
397
418
.
14.
Ogaji
,
S. O. T.
,
Sampath
,
S.
,
Marinai
,
L.
,
Singh
,
R.
, and
Probert
,
S. D.
,
2005
, “
Evolution Strategy for Gas-Turbine Fault-Diagnoses
,”
Appl. Energy
,
81
(
2
), pp.
222
230
.
15.
Kurz
,
R.
,
Brun
,
K.
, and
Wollie
,
M.
,
2009
, “
Degradation Effects on Industrial Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
131
(
6
), p. 062401.
16.
Kurz
,
R.
, and
Brun
,
K.
,
2009
, “
Degradation of Gas Turbine Performance in Natural Gas Service
,”
J. Nat. Gas Sci. Eng.
,
1
(
3
), pp.
95
102
.
17.
Jordal
,
K.
,
Assadi
,
M.
, and
Genrup
,
M.
,
2002
, “
Variations in Gas-Turbine Blade Life and Cost Due to Compressor Fouling—A Thermoeconomic Approach
,”
5
(
1
), pp.
37
47.
18.
Abdul Ghafir
,
M. F.
,
Li
,
Y. G.
,
Singh
,
R.
,
Huang
,
K.
, and
Feng
,
X.
,
2010
, “
Impact of Operating and Health Conditions on Aero Gas Turbine Hot Section Creep Life Using a Creep Factor Approach
,”
ASME
Paper No. GT2010-22332.
19.
Li
,
Y. G.
, and
Singh
,
R.
,
2005
, “
An Advanced Gas Turbine Gas Path Diagnostic System-PYTHIA
,”
XVII International Symposium on Air Breathing Engines, Munich, Germany
, pp.
1
12
.
20.
Li
,
Y. G.
,
Ghafir
,
M. F. A.
,
Wang
,
L.
,
Singh
,
R.
,
Huang
,
K.
, and
Feng
,
X.
,
2011
, “
Nonlinear Multiple Points Gas Turbine Off-Design Performance Adaptation Using a Genetic Algorithm
,”
ASME J. Eng. Gas Turbines Power
,
133
(
7
), pp.
1
9
.
21.
Li
,
Y. G.
, and
Pilidis
,
P.
,
2010
, “
GA-Based Design-Point Performance Adaptation and Its Comparison With ICM-Based Approach
,”
Appl. Energy
,
87
(
1
), pp.
340
348
.
22.
GE-Marine
,
2014
, “
LM2500+ Marine Gas Turbine
,” GE-Marine, accessed July 20, 2016, http://www.lambdanovatronics.com/marine/engines/military/lm2500plus/
23.
Larson
,
F. R.
, and
Miller
,
J.
,
1952
, “
Time-Temperature Relationship for Rupture and Creep Stresses
,”
Trans. ASME
,
74
, pp.
765
771
.https://www.researchgate.net/publication/200653334_A_Time-Temperature_Relationship_for_Rupture_and_Creep_Stresses
24.
Lieuwen
,
T. C.
, and
Vigor
,
Y.
,
2013
,
Gas Turbine Emissions
,
Cambridge University Press
, Cambridge,
UK
, pp.
3
23
.
You do not currently have access to this content.