Future gas turbine engines will operate at significantly higher temperatures (∼1800 °C) than current engines (∼1400 °C) for improved efficiency and power density. As a result, the current set of metallic components (titanium-based and nickel-based superalloys) will be replaced with ceramics and ceramic matrix composites (CMCs). These materials can survive the higher operating temperatures of future engines at significant weight savings over the current metallic components, i.e., advanced ceramic components will facilitate more powerful engines. While oxide-based CMCs may not be suitable candidates for hot-section components, they may be suitable for structural and/or exhaust components. However, a more thorough understanding of the performance under relevant environment of these materials is needed. To this end, this work investigates the high-temperature durability of a family of oxide–oxide CMCs (Ox–Ox CMCs) under an engine-relevant environment. Flat Ox–Ox CMC panels were cyclically exposed to temperatures up to 1150 °C, within 240 m/s (∼0.3 M) gas flows and hot sand impingement. Front and backside surface temperatures were monitored by a single-wavelength (SW) pyrometer and thermocouple, respectively. In addition, an infrared (IR) camera was used to evaluate the damage evolution of the samples during testing. Flash thermography nondestructive evaluation (NDE) was used to elucidate defects present before and after thermal exposure.

References

References
1.
Ohnabe
,
H.
,
Masaki
,
S.
,
Onozuka
,
M.
,
Miyahara
,
K.
, and
Sasa
,
T.
,
1999
, “
Potential Application of Ceramic Matrix Composites to Aero-Engine Components
,”
Compos. Part A
,
30
(
4
), pp.
489
496
.
2.
Steyer
,
T. E.
,
2013
, “
Shaping the Future of Ceramics for Aerospace Applications
,”
Int. J. Appl. Ceram. Technol.
,
10
(
3
), pp.
389
394
.
3.
Chawla
,
K. K.
,
1998
, “
Chapter 7: Ceramic Matrix Composites
,”
Composite Materials
,
Springer
, Berlin, pp.
212
251
.
4.
Yin
,
X. W.
,
Cheng
,
L. F.
,
Zhang
,
L. T.
,
Travitzky
,
N.
, and
Greil
,
P.
,
2017
, “
Fibre-Reinforced Multifunctional SiC Matrix Composite Materials
,”
Int. Mater. Rev.
,
62
(
3
), pp.
117
172
.
5.
U.S.
Army Capabilities Integration Center
,
2017
, “
The US Army Functional Concept for Movement and Maneuver, 2020-2040
,” U.S. Army Training and Doctrine Command, Ft. Eustis, VA, Report No.
TRADOC PAM 525-3-6
.http://www.tradoc.army.mil/tpubs/pams/tp525-3-6.pdf
6.
U.S.
Army Capabilities Integration Center
,
2017
, “
The Warfighters' Science and Technology Needs
,” U.S. Army Training and Doctrine Command, Ft. Eustis, VA,
Report
.http://www.arcic.army.mil/App_Documents/Army-Warfighters-ST-Needs-Bulletin.pdf
7.
U.S.
Army Research Laboratory,
2002
, “
Composite Materials Handbook, Volume 5. Ceramic Matrix Composites
,” Department of Defense, Washington, DC, Report No. MIL-HDBK-17-5.
8.
NASA Aeronautics Research Mission Directorate,
2017
, “
Strategic Implementation Plan
,” National Aeronautics and Space Administration, Washington, DC,
Report
https://www.nasa.gov/sites/default/files/atoms/files/sip-2017-03-23-17-high.pdf.
9.
BusinessWire
,
2017
, “
GE Aviation Building U.S. Blueprint to Industrialize CMCs
,” BusinessWire, San Francisco, CA, accessed June 05, 2017, http://www.businesswire.com/news/home/20170224005482/en/
10.
Aviation Week Network
,
2015
, “
GE Details Sixth-Generation Adaptive Fighter Engine Plan
,” Aviation Week Network, Washington, DC, accessed Nov. 15, 2017, http://aviationweek.com/defense/ge-details-sixth-generation-adaptive-fighter-engine-plan
11.
Rolls-Royce
,
2016
, “
Rolls-Royce Expands Aerospace Research Center in Southern California
,” Rolls-Royce, Westhampnett, UK, accessed June 05, 2017, https://www.rolls-royce.com/media/press-releases/yr-2016/27-10-2016-rr-expands-aerospace-research-center.aspx
12.
Gagliardi
,
M.
,
2016
,
Ceramic Matrix Composites and Carbon Matrix Composities: Technologies and Global Markets
,
Business Communications Company
,
Wellesley, MA
.
13.
Mouchon
,
E.
, and
Colomban
,
P.
,
1995
, “
Oxide Ceramic Matrix/Oxide Fibre Woven Fabric Composites Exhibiting Fracture Behavior
,”
Composites
,
26
(
3
), pp.
175
182
.
14.
Levi
,
C. G.
,
Yang
,
J. Y.
,
Dalgeish
,
B. J.
,
Zok
,
F. W.
, and
Evans
,
A. G.
,
1998
, “
Processing and Performance of an All-Oxide Ceramic Composite
,”
J. Am. Ceram. Soc.
,
81
(
8
), pp.
2077
2086
.
15.
Ben Rambane
,
C.
,
Julian-Jankowiak
,
A.
,
Valle
,
R.
,
Renollet
,
Y.
,
Parlier
,
M.
,
Martin
,
E.
, and
Diss
,
P.
,
2017
, “
Microstructure and Mechanical Behavior of a Nextel610/Alumina Weak Matrix Composite Subjected to Tensile and Compressive Loadings
,”
J. Eur. Ceram. Soc.
,
37
(
8
), pp.
2919
2932
.
16.
Kiser
,
J. D.
,
Bansal
,
N. P.
,
Szelagowski
,
J.
,
Sokhey
,
J.
,
Heffernan
,
T.
,
Clegg
,
J.
,
Pierluissi
,
A.
,
Riedell
,
J.
,
Wyen
,
T.
,
Atmur
,
S.
, and
Ursic
,
J.
,
2015
, “
Oxide/Oxide Ceramic Matrix Composite (CMC) Exhaust Mixer Development in the NASA Environmentally Responsible Aviation (ERA) Project
,”
ASME
Paper No. GT2015-43593.
17.
Volkmann
,
E.
,
Tushtev
,
K.
,
Koch
,
D.
,
Wilhelmi
,
C.
,
Goring
,
J.
, and
Rezwan
,
K.
,
2015
, “
Assessment of Three Oxide/Oxide Ceramic Matrix Composites: Mechanical Performance and Effects of Heat Treatments
,”
Compos. Part A
,
68
, pp.
19
28
.
18.
Askarinejad
,
S.
,
Rahbar
,
N.
,
Sabelkin
,
V.
, and
Mall
,
S.
,
2015
, “
Mechanical Behavior of a Notched Oxide/Oxide Ceramic Matrix Composite in Combustion Environment: Experiments and Simulations
,”
Compos. Struct.
,
127
, pp.
77
86
.
19.
Di Salvo
,
D. T.
,
Sackett
,
E. E.
,
Johnston
,
R. E.
,
Thompson
,
D.
,
Andrews
,
P.
, and
Bache
,
M. R.
,
2015
, “
Mechanical Characterization of a Fiber Reinforced Oxide/Oxide Ceramic Matrix Composite
,”
J. Eur. Ceram. Soc.
,
35
(
16
), pp.
4513
4520
.
20.
Ghoshal
,
A.
,
Murugan
,
M.
,
Walock
,
M. J.
,
Nieto
,
A.
,
Barnett
,
B. D.
,
Pepi
,
M. S.
,
Swab
,
J. J.
,
Zhu
,
D.
,
Kerner
,
K. A.
,
Rowe
,
C. R.
,
Shiao
,
C.-Y.
,
Hopkins
,
D. A.
, and
Gazonas
,
G. A.
,
2018
, “
Molten Particulate Impact on Tailored Thermal Barrier Coatings for Gas Turbine Engine
,”
ASME J. Eng. Gas Turbines Power
,
140
(
2
), p.
022601
.
21.
Murugan
,
M.
,
Ghoshal
,
A.
,
Walock
,
M.
,
Nieto
,
A.
,
Bravo
,
L.
,
Barnett
,
B.
,
Pepi
,
M.
,
Swab
,
J.
,
Pegg
,
R. T.
,
Rowe
,
C.
,
Zhu
,
D.
, and
Kerner
,
K.
,
2017
, “
Microstructure Based Material-Sand Particulate Interactions and Assessment of Coatings for High Temperature Turbine Blades
,”
ASME
Paper No. GT2017-64051.
22.
Thornton
,
J.
,
Wood
,
C.
,
Kimpton
,
J. A.
,
Sesso
,
M.
,
Zonneveldt
,
M.
, and
Armstrong
,
N.
,
2017
, “
Failure Mechanisms of Calcium Magnesium Aluminum Silicate Affected Thermal Barrier Coatings
,”
J. Am. Ceram. Soc.
,
100
(
6
), pp.
2679
2689
.
23.
Krause
,
A. R.
,
Li
,
X.
, and
Padture
,
N. P.
,
2016
, “
Interaction Between Ceramic Powder and Molten Calcia-Magnesia-Alumino-Silicate (CMAS) Glass, and Its Implication on CMAS-Resistant Thermal Barrier Coatings
,”
Scr. Mater.
,
112
, pp.
118
122
.
24.
Drexler
,
J. M.
,
Gledhill
,
A. D.
,
Shinoda
,
K.
,
Vasilev
,
A. L.
,
Reddy
,
K. M.
,
Sampath
,
S.
, and
Padture
,
N. P.
,
2011
, “
Jet Engine Coatings for Resisting Volcanic Ash Damage
,”
Adv. Mater.
,
23
(
21
), pp.
2419
2424
.
25.
Cawley
,
P.
, and
Adams
,
R. D.
,
1988
, “
The Mechanics of the Coin-Tap Method of Non-Destructive Testing
,”
J. Sound Vib.
,
122
(
2
), pp.
299
316
.
You do not currently have access to this content.