The major exhaust gas pollutants from heavy duty gas turbine engines are CO and NOx. The difficulty of predicting the concentration of these combustion products originates from their wide range of chemical time scales. In this paper, a combustion model that includes the prediction of the carbon monoxide and nitric oxide emissions is tested. Large eddy simulations (LES) are performed using a compressible code (OpenFOAM). A modified flamelet generated manifolds (FGM) approach is applied with an artificially thickened flame approach (ATF) to resolve the flame on the numerical grid, with a flame sensor to ensure that the flame is only thickened in the flame region. For the prediction of the CO and NOx emissions, pollutant species transport equations and a second, CO based, progress variable are introduced for the flame burnout zone to account for slow chemistry effects. For the validation of the models, the Cambridge burner of Sweeney et al. (2012, “The Structure of Turbulent Stratified and Premixed Methane/Air Flames—I: Non-Swirling Flows,” Combust. Flame, 159, pp. 2896–2911; 2012, “The Structure of Turbulent Stratified and Premixed Methane/Air Flames—II: Swirling Flows,” Combust. Flame, 159, pp. 2912–2929.) is employed, as both carbon monoxide and nitric oxide [Apeloig et al. (2016, “PLIF Measurements of Nitric Oxide and Hydroxyl Radicals Distributions in Swirl Stratified Premixed Flames,” 18th International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics, Lisbon, Portugal, July 4–7.)] data are available.

References

References
1.
van Oijen
,
J. A.
, and
de Goey
,
L. P. H.
,
2000
, “
Modelling of Premixed Laminar Flames Using Flamelet-Generated Manifolds
,”
Combust. Sci. Technol.
,
161
(
1
), pp.
113
137
.
2.
van Oijen
,
J. A.
,
Bastiaans
,
R. J. M.
, and
de Goey
,
L. P. H.
,
2007
, “
Low-Dimensional Manifolds in Direct Numerical Simulations of Premixed Turbulent Flames
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
1377
1384
.
3.
van Oijen
,
J. A.
,
Donini
,
A.
,
Bastiaans
,
R. J. M.
,
ten Thije Boonkkamp
,
J. H. M.
, and
de Goey
,
L. P. H.
,
2016
, “
State-of-the-Art in Premixed Combustion Modeling Using Flamelet Generated Manifolds
,”
Prog. Energy Combust. Sci.
,
57
, pp.
30
74
.
4.
Gicquel
,
O.
,
Darabiha
,
N.
, and
Thévenin
,
D.
,
2000
, “
Laminar Premixed Hydrogen/Air Counterflow Flame Simulations Using Flame Prolongation of ILDM With Differential Diffusion
,”
Proc. Combust. Inst.
,
28
(
2
), pp.
1901
1908
.
5.
Fiorina
,
B.
,
Baron
,
R.
,
Gicquel
,
O.
,
Thevenin
,
D.
,
Carpentier
,
S.
, and
Darabiha
,
N.
,
2003
, “
Modelling Non-Adiabatic Partially Premixed Flames Using Flame-Prolongation of ILDM
,”
Combust. Theory Modell.
,
7
(
3
), pp.
449
470
.
6.
Fiorina
,
B.
,
Mercier
,
R.
,
Kuenne
,
G.
,
Ketelheun
,
A.
,
Avdić
,
A.
,
Janicka
,
J.
,
Geyer
,
D.
,
Dreizler
,
A.
,
Alenius
,
E.
,
Duwig
,
C.
,
Trisjono
,
P.
,
Kleinheinz
,
K.
,
Kang
,
S.
,
Pitsch
,
H.
,
Proch
,
F.
,
Cavallo Marincola
,
F.
, and
Kempf
,
A. M.
,
2015
, “
Challenging Modeling Strategies for Les of Non-Adiabatic Turbulent Stratified Combustion
,”
Combust. Flame
,
162
(
11
), pp.
4264
4282
.
7.
Proch
,
F.
, and
Kempf
,
A. M.
,
2014
, “
Numerical Analysis of the Cambridge Stratified Flame Series Using Artificial Thickened Flame LES With Tabulated Premixed Flame Chemistry
,”
Combust. Flame
,
161
(
10
), pp.
2627
2646
.
8.
Proch
,
F.
, and
Kempf
,
A. M.
,
2015
, “
Modeling Heat Loss Effects in the Large Eddy Simulation of a Model Gas Turbine Combustor With Premixed Flamelet Generated Manifolds
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3337
3345
.
9.
See
,
Y. C.
, and
Ihme
,
M.
,
2015
, “
Large Eddy Simulation of a Partially-Premixed Gas Turbine Model Combustor
,”
Proc. Combust. Inst.
,
35
(
2
), pp.
1225
1234
.
10.
Rieth
,
M.
,
Proch
,
F.
,
Rabaçal
,
M.
,
Franchetti
,
B. M.
,
Cavallo Marincola
,
F.
, and
Kempf
,
A. M.
,
2016
, “
Flamelet LES of a Semi-Industrial Pulverized Coal Furnace
,”
Combust. Flame
,
173
, pp.
39
56
.
11.
Pitsch
,
H.
,
2002
, “
Improved Pollutant Predictions in Large-Eddy Simulations of Turbulent Non-Premixed Combustion by Considering Scalar Dissipation Rate Fluctuations
,”
Proc. Combust. Inst.
,
29
(2), pp.
1971
1978
.
12.
Kempf
,
A. M.
,
Flemming
,
F.
, and
Janicka
,
J.
,
2005
, “
Investigation of Lengthscales, Scalar Dissipation, and Flame Orientation in a Piloted Diffusion Flame by LES
,”
Proc. Combust. Inst.
,
30
(1), pp.
557
565
.
13.
Eggenspieler
,
G.
, and
Menon
,
S.
,
2004
, “
Large-Eddy Simulation of Pollutant Emission in a Doe-Hat Combustor
,”
J. Propul. Power
,
20
(
6
), pp.
1076
1085
.
14.
Bulat
,
G.
,
Jones
,
W. P.
, and
Marquis
,
A. J.
,
2014
, “
NO and CO Formation in an Industrial Gas-Turbine Combustion Chamber Using LES With the Eulerian Sub-Grid PDF Method
,”
Combust. Flame
,
161
(
7
), pp.
1804
1825
.
15.
Collonval
,
F.
,
2015
, “
Modeling of Auto-Ignition and NOx Formation in Turbulent Reacting Flows
,”
Ph.D thesis
, Technische Universität München, Munich, Germany.https://www.tfd.mw.tum.de/fileadmin/w00bsb/www/Forschung/Dissertationen/Collonval_2015_Modeling_of_auto-ignition_and_NOx_formation_in_turbulent_reacting_flows.pdf
16.
Locci
,
C.
,
Colin
,
O.
,
Poitou
,
D.
, and
Mauß
,
F.
,
2015
, “
A Tabulated, Flamelet Based NO Model for Large Eddy Simulations of Non Premixed Turbulent Jets With Enthalpy Loss
,”
Flow, Turbul. Combust.
,
94
(
4
), pp.
691
729
.
17.
Jaravel
,
T.
,
Riber
,
E.
,
Cuenot
,
B.
, and
Bulat
,
G.
,
2016
, “
Large Eddy Simulation of an Industrial Gas Turbine Combustor Using Reduced Chemistry With Accurate Pollutant Prediction
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3817
3825
.
18.
Wegner
,
B.
,
Gruschka
,
U.
,
Krebs
,
W.
,
Egorov
,
Y.
,
Forkel
,
H.
,
Ferreira
,
J.
, and
Aschmoneit
,
K.
,
2011
, “
CFD Prediction of Partload CO Emissions Using a Two-Timescale Combustion Model
,”
ASME J. Eng. Gas Turbines Power
,
133
(
7
), p.
071502
.
19.
Ketelheun
,
A.
,
Olbricht
,
C.
,
Hahn
,
F.
, and
Janicka
,
J.
,
2011
, “
NO Prediction in Turbulent Flames Using LES/FGM With Additional Transport Equations
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
2975
2982
.
20.
Ketelheun
,
A.
,
Aschmoneit
,
K.
, and
Janicka
,
J.
,
2012
, “
CO Prediction in LES of Turbulent Flames With Additional Modeling of the Chemical Source Term
,”
ASME
Paper No. GT2012–69001.
21.
Dederichs
,
S.
,
Zarzalis
,
N.
, and
Beck
,
C.
,
2015
, “
Validation of a Novel LES Approach Using Tabulated Chemistry for Thermoacoustic Instability Prediction in Gas Turbines
,”
ASME
Paper No. GT2015-43502.
22.
Bradley
,
D.
,
1992
, “
How Fast Can We Burn
?,”
Symp. (Int.) Combust.
,
24
(1), pp.
247
262
.
23.
Wang
,
G.
,
Boileau
,
M.
, and
Veynante
,
D.
,
2011
, “
Implementation of a Dynamic Thickened Flame Model for Large Eddy Simulations of Turbulent Premixed Combustion
,”
Combust. Flame
,
158
(
11
), pp.
2199
2213
.
24.
Sweeney
,
M. S.
,
Hochgreb
,
S.
,
Dunn
,
M. J.
, and
Barlow
,
R. S.
,
2012
, “
The Structure of Turbulent Stratified and Premixed Methane/Air Flames—I: Non-Swirling Flows
,”
Combust. Flame
,
159
(
9
), pp.
2896
2911
.
25.
Sweeney
,
M. S.
,
Hochgreb
,
S.
,
Dunn
,
M. J.
, and
Barlow
,
R. S.
,
2012
, “
The Structure of Turbulent Stratified and Premixed Methane/Air Flames—II: Swirling Flows
,”
Combust. Flame
,
159
(
9
), pp.
2912
2929
.
26.
Mercier
,
R.
,
Fiorina
,
B.
,
Proch
,
F.
, and
Kempf
,
A. M.
,
2013
, “
Numerical and Modeling Strategies for the Simulation of the Cambridge Stratified Flame Series
,” Eighth International Symposium on Turbulence and Shear Flow Phenomena (
TSFP
), Poitiers, France, Aug. 28–30.http://www.tsfp-conference.org/proceedings/2013/v1/comb2a.pdf
27.
Mercier
,
R.
,
Schmitt
,
T.
,
Veynante
,
D.
, and
Fiorina
,
B.
,
2015
, “
The Influence of Combustion SGS Submodels on the Resolved Flame Propagation. Application to the LES of the Cambridge Stratified Flames
,”
Proc. Combust. Inst.
,
35
(
2
), pp.
1259
1267
.
28.
Nambully
,
S.
,
Domingo
,
P.
,
Moureau
,
V.
, and
Vervisch
,
L.
,
2014
, “
A Filtered-Laminar-Flame Pdf Sub-Grid Scale Closure for LES of Premixed Turbulent Flames—Part I: Formalism and Application to a Bluff-Body Burner With Differential Diffusion
,”
Combust. Flame
,
161
(
7
), pp.
1756
1774
.
29.
Nambully
,
S.
,
Domingo
,
P.
,
Moureau
,
V.
, and
Vervisch
,
L.
,
2014
, “
A Filtered-Laminar-Flame PDF Sub-Grid-Scale Closure for LES of Premixed Turbulent Flames—II: Application to a Stratified Bluff-Body Burner
,”
Combust. Flame
,
161
(
7
), pp.
1775
1791
.
30.
Brauner
,
T.
,
Jones
,
W. P.
, and
Marquis
,
A. J.
,
2016
, “
LES of the Cambridge Stratified Swirl Burner Using a Sub-Grid PDF Approach
,”
Flow Turbul. Combust.
,
96
(
4
), pp.
965
985
.
31.
Proch
,
F.
,
Domingo
,
P.
,
Vervisch
,
L.
, and
Kempf
,
A. M.
, 2017, “
Flame Resolved Simulation of a Turbulent Premixed Bluff-Body Burner Experiment—Part I: Analysis of the Reaction Zone Dynamics With Tabulated Chemistry
,”
Combust. Flame
,
180
, pp. 321–339.
32.
Proch
,
F.
,
Domingo
,
P.
,
Vervisch
,
L.
, and
Kempf
,
A. M.
,
2017
, “
Flame Resolved Simulation of a Turbulent Premixed Bluff-Body Burner Experiment—Part II: A-Priori and A-Posteriori Investigation of Sub-Grid Scale Wrinkling Closures in the Context of Artificially Thickened Flame Modeling
,”
Combust. Flame
,
180
, pp.
340
350
.
33.
Apeloig
,
J.
,
Gautier
,
P.
,
Salaün
,
E.
,
Barviau
,
B.
,
Godard
,
G.
,
Hochgreb
,
S.
, and
Grisch
,
F.
,
2016
, “
PLIF Measurements of Nitric Oxide and Hydroxyl Radicals Distributions in Swirled Stratified Premixed Flames
,”
18th International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics
, Lisbon, Portugal, July 4–7.
34.
Dederichs
,
S.
,
2016
, “
Numerical Modeling of Emissions and Thermoacoustics in Heavy-Duty Gas Turbine Combustion Systems
,” Ph.D. thesis, Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany.
35.
Mahiques
,
E. I.
,
Dederichs
,
S.
,
Beck
,
C.
,
Kaufmann
,
P.
, and
Kok
,
J. B. W.
,
2017
, “
Coupling Multicomponent Droplet Evaporation and Tabulated Chemistry Combustion Models for Large-Eddy Simulations
,”
Int. J. Heat Mass Transfer
,
104
, pp.
51
70
.
36.
Mahiques
,
E. I.
,
2017
, “
Development of Spray and Combustion Models for the Simulation of Gas Turbine Combustion Systems
,”
Ph.D. thesis
, University of Twente, Enschede, The Netherlands.
37.
Peters
,
N.
,
1988
, “
Laminar Flamelet Concepts in Turbulent Combustion
,”
Symp. (Int.) Combust.
,
21
(
1
), pp.
1231
1250
.
38.
Colin
,
O.
,
Ducros
,
F.
,
Veynante
,
D.
, and
Poinsot
,
T. J.
,
2000
, “
A Thickened Flame Model for Large Eddy Simulations of Turbulent Premixed Combustion
,”
Phys. Fluids
,
12
(
7
), pp.
1843
1863
.
39.
Legier, J. P.
,
Poinsot, T.
, and
Veynante, D.
, 2000, “
Dynamically Thickened Flame LES Model for Premixed and Non-Premixed Turbulent Combustion
,”
Center for Turbulence Research Summer Program
, Stanford, CA, pp. 157–168.https://www.researchgate.net/publication/265741039_Dynamically_thickened_flame_LES_model_for_premixed_and_non-premixed_turbulent_combustion
40.
Charlette
,
F.
,
Meneveau
,
C.
, and
Veynante
,
D.
,
2002
, “
A Power-Law Flame Wrinkling Model for Les of Premixed Turbulent Combustion—Part I: Non-Dynamic Formulation and Initial Tests
,”
Combust. Flame
,
131
(
1–2
), pp.
159
180
.
41.
Barlow
,
R. S.
,
Dunn
,
M. J.
,
Sweeney
,
M. S.
, and
Hochgreb
,
S.
,
2012
, “
Effects of Preferential Transport in Turbulent Bluff-Body-Stabilized Lean Premixed CH4/Air Flames
,”
Combust. Flame
,
159
(
8
), pp.
2563
2575
.
42.
Winden
,
B.
,
2014
, “
Powering Performance of a Self-Propelled Ship in Waves
,”
Ph.D. thesis
, University of Southampton, Southampton, UK.https://eprints.soton.ac.uk/390102/
43.
Klein
,
M.
,
Sadiki
,
A.
, and
Janicka
,
J.
,
2003
, “
A Digital Filter Based Generation of Inflow Data for Spatially Developing Direct Numerical or Large Eddy Simulations
,”
J. Comput. Phys.
,
186
(
2
), pp.
652
665
.
44.
Kempf
,
A. M.
,
Wysocki
,
S.
, and
Pettit
,
M.
,
2012
, “
An Efficient, Parallel Low-Storage Implementation of Klein's Turbulence Generator for LES and DNS
,”
Comput. Fluids
,
60
, pp.
58
60
.
45.
Celik
,
I.
,
Cehreli
,
Z.
, and
Yavuz
,
I.
,
2005
, “
Index of Resolution Quality for Large Eddy Simulations
,”
ASME J. Fluids Eng.
,
127
(
5
), pp.
949
958
.
You do not currently have access to this content.