Climate change is driving the world to investigate alternative sources of fuel. In order to address any potential economic shortfalls to biodiesel, one can look to its by-product, glycerin, as a potential revenue source. At the University of Kansas, a novel system converts glycerin over a nickel–alumina catalyst into a hydrogen-rich gas (syngas) that is sent to an engine-generator system in one continuous flow process. This effort describes the hardware employed in this system, and demonstrates the production of power from the reforming of glycerin. Comparison of the peak combustion pressure and combustion timing produced between the syngas generated from glycerin and propane combustion shows virtually no performance differences between the two fuels. However, emissions vary significantly due to a variance in air-to-fuel ratios between the two fuels that will require a re-optimization when running glycerin. This system has the potential to reduce power requirements at biodiesel production facilities by utilizing glycerin on-site in a low-cost manner.

References

References
1.
Carraretto
,
C.
,
Macor
,
A.
,
Mirandola
,
A.
,
Stoppato
,
A.
, and
Tonon
,
S.
,
2004
, “
Biodiesel as Alternative Fuel: Experimental Analysis and Energetic Evaluations
,”
Energy
,
29
(
12–15
), pp.
2195
2211
.
2.
Balat
,
M.
,
2010
, “
Potential Alternatives to Edible Oils for Biodiesel Production—A Review of Current Work
,”
Energy Convers. Manage.
,
52
(
2
), pp.
1479
1492
.
3.
Pinto
,
A.
,
Guarieiro
,
L.
,
Rezende
,
M.
,
Ribeiro
,
N.
,
Torres
,
E.
,
Lopes
,
W.
,
Pereira
,
P.
, and
Andrade
,
J.
,
2005
, “
Biodiesel: An Overview
,”
J. Braz. Chem. Soc.
,
16
(
6b
), pp.
1313
1330
.
4.
Knothe
,
G.
,
Krahl
,
J.
, and
Gerpen
,
J. V.
,
2010
,
The Biodiesel Handbook
,
AOCS Press
,
Champaign, IL
.
5.
Mangus
,
M.
,
Kiani
,
F.
,
Mattson
,
J.
,
Depcik
,
C.
,
Peltier
,
E.
, and
Stagg-Williams
,
S.
,
2014
, “
Comparison of Neat Biodiesels and ULSD in an Optimized Single-Cylinder Diesel Engine With Electronically-Controlled Fuel Injection
,”
Energy Fuels
,
28
(
6
), pp.
3849
3862
.
6.
Hill
,
J.
,
Nelson
,
E.
,
Tilman
,
D.
,
Polasky
,
S.
, and
Tiffany
,
D.
,
2006
, “
Environmental, Economic, and Energetic Costs and Benefits of Biodiesel and Ethanol Biofuels
,”
Proc. Natl. Acad. Sci.
,
103
(
30
), pp.
11206
11210
.
8.
Zhang
,
Y.
,
Dubé
,
M. A.
,
Mclean
,
D. D.
, and
Kates
,
M.
,
2003
, “
Biodiesel Production From Waste Cooking Oil—1: Process Design and Technological Assessment
,”
Bioresour. Technol.
,
89
(
1
), pp.
1
16
.
9.
Nichele
,
V.
,
Signoretto
,
M.
,
Menegazzo
,
F.
,
Gallo
,
A.
,
Dal Santo
,
V.
,
Cruciani
,
G.
, and
Cerrato
,
G.
,
2012
, “
Glycerol Steam Reforming for Hydrogen Production: Design of Ni Supported Catalysts
,”
Appl. Catal. B: Environ.
,
111–112
, pp.
225
232
.
10.
National Biodiesel Board
,
2017
, “
Production Statistics
,” National Biodiesel Board, Jefferson City, MO, accessed Apr. 5, 2018, http://biodiesel.org/production/production-statistics
11.
Stelmachowski
,
M.
,
2011
, “
Utilization of Glycerol, a By-Product of the Transestrification Process of Vegetable Oils: A Review
,”
Ecol. Chem. Eng. S
,
18
(
1
), pp.
9
30
.https://www.researchgate.net/publication/279574383_Utilization_of_glycerol_a_by-product_of_the_transestrification_process_of_vegetable_oils_A_review
12.
Ayoub
,
M.
, and
Abdullah
,
A. Z.
,
2012
, “
Critical Review on the Current Scenario and Significance of Crude Glycerol Resulting From Biodiesel Industry Towards More Sustainable Renewable Energy Industry
,”
Renewable Sustainable Energy Rev.
,
16
(
5
), pp.
2671
2686
.
13.
Bart
,
J. C. J.
,
Palmeri
,
N.
, and
Cavallaro
,
S.
,
2010
,
Biodiesel Science and Technology: From Soil to Oil
,
Woodhead Publishing Limited
,
Cambridge, UK
.
14.
Biodiesel Magazine
,
2016
, “
U.S. Biodiesel Plants
,” Biodiesel Magazine, Grand Forks, ND, accessed Dec. 13, 2017, http://www.biodieselmagazine.com/plants/listplants/USA/
15.
Irwin
,
S.
,
2014
, “
Understanding the Behavior of Biodiesel RINs Prices
,”
Farmdoc Daily
,
4
, p.
196
.http://farmdocdaily.illinois.edu/2014/10/understanding-behavior-of-biodiesel-rins-prices.html
16.
Kinoshita
,
E.
,
Hamasaki
,
K.
,
Jaqin
,
C.
, and
Takasaki
,
K.
,
2004
, “
Combustion Characteristics for Diesel Engines With Emulsified Biodiesel Without Adding Emulsifier
,”
SAE
Paper No. 2004-01-1860.
17.
Thompson
,
J. C.
, and
He
,
B. B.
,
2006
, “
Characterization of Crude Glycerol From Biodiesel Production From Multiple Feedstocks
,”
Appl. Eng. Agric.
,
22
(
2
), pp.
261
265
.
18.
Segur
,
J. B.
, and
Oberstar
,
H. E.
,
1951
, “
Viscosity of Glycerol and Its Aqueous Solutions
,”
Ind. Eng. Chem.
,
43
(
9
), pp.
2117
2120
.
19.
Crnkovic
,
P. M.
,
Koch
,
C.
,
Ávila
,
I.
,
Mortari
,
D. A.
,
Cordoba
,
A. M.
, and
Moreira Dos Santos
,
A.
,
2012
, “
Determination of the Activation Energies of Beef Tallow and Crude Glycerin Combustion Using Thermogravimetry
,”
Biomass Bioenergy
,
44
, pp.
8
16
.
20.
Pandey
,
R. K.
,
Rehman
,
A.
, and
Sarviya
,
R. M.
,
2012
, “
Impact of Alternative Fuel Properties on Fuel Spray Behavior and Atomization
,”
Renewable Sustainable Energy Rev.
,
16
(
3
), pp.
1762
1778
.
21.
Adhikari
,
S.
,
Fernando
,
S.
,
Gwaltney
,
S. R.
,
To
,
S. D. F.
,
Bricka
,
R. M.
,
Steele
,
P. H.
, and
Haryanto
,
A.
,
2007
, “
A Thermodynamic Analysis of Hydrogen Production by Steam Reforming of Glycerol
,”
Int. J. Hydrogen Energy
,
32
(
14
), pp.
2875
2880
.
22.
Bohon
,
M. D.
,
Metzger
,
B. A.
,
Linak
,
W. P.
,
King
,
C. J.
, and
Roberts
,
W. L.
,
2011
, “
Glycerol Combustion and Emissions
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
2717
2724
.
23.
Steinmetz
,
S. A.
,
Herrington
,
J. S.
,
Winterrowd
,
C. K.
,
Roberts
,
W. L.
,
Wendt
,
J. O. L.
, and
Linak
,
W. P.
,
2013
, “
Crude Glycerol Combustion: Particulate, Acrolein, and Other Volatile Organic Emissions
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
2749
2757
.
24.
Simmons
,
B. M.
,
2011
, “
Atomization and Combustion of Liquid Biofuels
,” Ph.D. dissertation, University of Alabama, Tuscaloosa, AL.
25.
Kundu
,
P.
,
2012
, “
Gas Turbine Combustion Chamber Design for Viscous Fuels
,”
M.S. thesis
, North Carolina State University, Raleigh, NC.http://www.lib.ncsu.edu/resolver/1840.16/7883
26.
Authayanun
,
S.
,
Arpornwichanop
,
A.
,
Paengjuntuek
,
W.
, and
Assabumrungrat
,
S.
,
2010
, “
Thermodynamic Study of Hydrogen Production From Crude Glycerol Autothermal Reforming for Fuel Cell Applications
,”
Int. J. Hydrogen Energy
,
35
(
13
), pp.
6617
6623
.
27.
Wang
,
X.
,
Li
,
S.
,
Wang
,
H.
,
Liu
,
B.
, and
Ma
,
X.
,
2008
, “
Thermodynamic Analysis of Glycerin Steam Reforming
,”
Energy Fuels
,
22
(
6
), pp.
4285
4291
.
28.
Yang
,
G.
,
Yu
,
H.
,
Peng
,
F.
,
Wang
,
H.
,
Yang
,
J.
, and
Xie
,
D.
,
2011
, “
Thermodynamic Analysis of Hydrogen Generation Via Oxidative Steam Reforming of Glycerol
,”
Renewable Energy
,
36
(
8
), pp.
2120
2127
.
29.
Özgür
,
D. Ö.
, and
Uysal
,
B. Z.
,
2011
, “
Hydrogen Production by Aqueous Phase Catalytic Reforming of Glycerine
,”
Biomass Bioenergy
,
35
(
2
), pp.
822
826
.
30.
Adhikari
,
S.
,
Fernando
,
S. D.
, and
Haryanto
,
A.
,
2009
, “
Hydrogen Production From Glycerol: An Update
,”
Energy Convers. Manage.
,
50
(
10
), pp.
2600
2604
.
31.
Cecrle
,
E.
,
Depcik
,
C.
,
Guo
,
J.
, and
Peltier
,
E.
,
2012
, “
Analysis of the Effects of Reformate (Hydrogen/Carbon Monoxide) as an Assistive Fuel on the Performance and Emissions of Used Canola-Oil Biodiesel
,”
Int. J. Hydrogen Energy
,
37
(
4
), pp.
3510
3527
.
32.
Mattson
,
J.
,
Langness
,
C.
,
Niles
,
B.
, and
Depcik
,
C.
,
2016
, “
Usage of Glycerin-Derived, Hydrogen-Rich Syngas Augmented by Soybean Biodiesel to Power a Biodiesel Production Facility
,”
Int. J. Hydrogen Energy
,
41
(
38
), pp.
17132
17144
.
33.
Brusca
,
S.
,
Chiodo
,
V.
,
Galvagno
,
A.
,
Lanzafame
,
R.
, and
Garrano
,
A. M. C.
,
2014
, “
Analysis of Reforming Gas Combustion in Internal Combustion Engine
,”
Energy Procedia
,
45
(
Suppl. C
), pp.
899
908
.
34.
Brusca
,
S.
,
Galvagno
,
A.
,
Lanzafame
,
R.
,
Garrano
,
A. M. C.
, and
Messina
,
M.
,
2015
, “
Performance Analysis of Biofuel Fed Gas Turbine
,”
Energy Procedia
,
81
(
Suppl. C
), pp.
493
504
.
35.
Noronha
,
F. B.
,
Shamsi
,
A.
,
Taylor
,
C.
,
Fendley
,
E. C.
,
Stagg-Williams
,
S.
, and
Resasco
,
D. E.
,
2003
, “
Catalytic Performance of Pt/ZrO2 and Pt/Ce-ZrO2 Catalysts on CO2 Reforming of CH4 Coupled With Steam Reforming or Under High Pressure
,”
Catal. Lett.
,
90
(
1–2
), pp.
13
21
.
36.
Gutiérrez Ortiz
,
F. J.
,
Serrera
,
A.
,
Galera
,
S.
, and
Ollero
,
P.
,
2013
, “
Methanol Synthesis From Syngas Obtained by Supercritical Water Reforming of Glycerol
,”
Fuel
,
105
, pp.
739
751
.
37.
Pickett
,
D.
,
2013
, “
Combustion of Reformed Propane as Segue to Glycerin Reformation
,”
ASME
Paper No IMECE2013-62355.
38.
Cheng
,
C. K.
,
Foo
,
S. Y.
, and
Adesina
,
A. A.
,
2010
, “
H2-Rich Synthesis Gas Production Over Co/Al2O3 Catalyst Via Glycerol Steam Reforming
,”
Catal. Commun.
,
12
(
4
), pp.
292
298
.
39.
Cheng
,
C. K.
,
Foo
,
S. Y.
, and
Adesina
,
A. A.
,
2011
, “
Carbon Deposition on Bimetallic Co–Ni/Al2O3 Catalyst During Steam Reforming of Glycerol
,”
Catal. Today
,
164
(
1
), pp.
268
274
.
40.
Pompeo
,
F.
,
Santori
,
G.
, and
Nichio
,
N. N.
,
2010
, “
Hydrogen and/or Syngas From Steam Reforming of Glycerol. Study of Platinum Catalysts
,”
Int. J. Hydrogen Energy
,
35
(
17
), pp.
8912
8920
.
41.
Chiodo
,
V.
,
Freni
,
S.
,
Galvagno
,
A.
,
Mondello
,
N.
, and
Frusteri
,
F.
,
2010
, “
Catalytic Features of Rh and Ni Supported Catalysts in the Steam Reforming of Glycerol to Produce Hydrogen
,”
Appl. Catal. A: General
,
381
(
1–2
), pp.
1
7
.
42.
Liu
,
Y.
,
Farrauto
,
R.
, and
Lawal
,
A.
,
2013
, “
Autothermal Reforming of Glycerol in a Dual Layer Monolith Catalyst
,”
Chem. Eng. Sci.
,
89
(
0
), pp.
31
39
.
43.
Bartholomew
,
C.
, and
Farrauto
,
R.
,
2006
,
Fundamentals of Industrial Catalytic Processes
,
Wiley
,
Hoboken, NJ
.
44.
Iriondo
,
A.
,
Barrio
,
V. L.
,
Cambra
,
J. F.
,
Arias
,
P. L.
,
Guemez
,
M. B.
,
Sanchez-Sanchez
,
M. C.
,
Navarro
,
R. M.
, and
Fierro
,
J. L. G.
,
2010
, “
Glycerol Steam Reforming Over Ni Catalysts Supported on Ceria and Ceria-Promoted Alumina
,”
Int. J. Hydrogen Energy
,
35
(
20
), pp.
11622
11633
.
45.
Wang
,
S.
, and
Lu
,
G. Q.
,
1998
, “
Reforming of Methane With Carbon Dioxide Over Ni/Al2O3 Catalysts: Effect of Nickel Precursor
,”
Appl. Catal. A: General
,
169
(
2
), pp.
271
280
.
46.
Kim
,
P.
,
Kim
,
H.
,
Joo
,
J. B.
,
Kim
,
W.
,
Song
,
I. K.
, and
Yi
,
J.
,
2006
, “
Effect of Nickel Precursor on the Catalytic Performance of Ni/Al2O3 Catalysts in the Hydrodechlorination of 1,1,2-Trichloroethane
,”
J. Mol. Catal. A: Chem.
,
256
(
1–2
), pp.
178
183
.
47.
Chen
,
I.
,
Lin
,
S. Y.
, and
Shiue
,
D. W.
,
1988
, “
Calcination of Nickel/Alumina Catalysts
,”
Ind. Eng. Chem. Res.
,
27
(
6
), pp.
926
929
.
48.
Mansaray
,
K. G.
,
Ghaly
,
A. E.
,
Al-Taweel
,
A. M.
,
Ugursal
,
V. I.
, and
Hamdullahpur
,
F.
,
2000
, “
Mathematical Modeling of a Fluidized Bed Rice Husk Gasifier—Part III: Model Verification
,”
Energy Sources
,
22
(
3
), pp.
281
296
.
49.
Nikoo
,
M. B.
, and
Mahinpey
,
N.
,
2008
, “
Simulation of Biomass Gasification in Fluidized Bed Reactor Using Aspen plus
,”
Biomass Bioenergy
,
32
(
12
), pp.
1245
1254
.
50.
Wang
,
W.
,
2010
, “
Thermodynamic Analysis of Glycerol Partial Oxidation for Hydrogen Production
,”
Fuel Process. Technol.
,
91
(
11
), pp.
1401
1408
.
51.
Iriondo
,
A.
,
Barrio
,
V. L.
,
Cambra
,
J. F.
,
Arias
,
P. L.
,
Guemez
,
M. B.
,
Navarro
,
R. M.
,
Sanchez-Sanchez
,
M. C.
, and
Fierro
,
J. L. G.
,
2009
, “
Influence of La2O3 Modified Support and Ni and Pt Active Phases on Glycerol Steam Reforming to Produce Hydrogen
,”
Catal. Commun.
,
10
(
8
), pp.
1275
1278
.
52.
Slinn
,
M.
,
Kendall
,
K.
,
Mallon
,
C.
, and
Andrews
,
J.
,
2008
, “
Steam Reforming of Biodiesel By-Product to Make Renewable Hydrogen
,”
Bioresour. Technol.
,
99
(
13
), pp.
5851
5858
.
53.
Silvey
,
L.
,
2011
, “
Hydrogen and Syngas Production from Biodiesel Derived Crude Glycerol
,”
M.Sc. thesis
, University of Kansas, Lawrence, KS.https://kuscholarworks.ku.edu/handle/1808/9697
54.
Glenn Research Center
,
2015
, “
NASA Chemical Equilibrium with Applications
,” Glenn Research Center, Cleveland, OH, accessed Apr. 5, 2018, https://www.grc.nasa.gov/www/CEAWeb/ceaHome.htm
55.
Chen
,
T.
,
Wang
,
W. G.
,
Miao
,
H.
,
Li
,
T.
, and
Xu
,
C.
,
2011
, “
Evaluation of Carbon Deposition Behavior on the Nickel/Yttrium-Stabilized Zirconia Anode-Supported Fuel Cell Fueled With Simulated Syngas
,”
J. Power Sources
,
196
(
5
), pp.
2461
2468
.
56.
Czekaj
,
I.
,
Struis
,
R.
,
Wambach
,
J.
, and
Biollaz
,
S.
,
2011
, “
Sulphur Poisoning of Ni Catalysts Used in the SNG Production From Biomass: Computational Studies
,”
Catal. Today
,
176
(
1
), pp.
429
432
.
57.
Hashemnejad
,
S. M.
, and
Parvari
,
M.
,
2011
, “
Deactivation and Regeneration of Nickel-Based Catalysts for Steam-Methane Reforming
,”
Chin. J. Catal.
,
32
(
1–2
), pp.
273
279
.
58.
Sanchez
,
E. A.
, and
Comelli
,
R. A.
,
2012
, “
Hydrogen by Glycerol Steam Reforming on a Nickel–Alumina Catalyst: Deactivation Processes and Regeneration
,”
Int. J. Hydrogen Energy
,
37
(
19
), pp.
14740
14746
.
59.
Valliyappan
,
T.
,
Ferdous
,
D.
,
Bakhshi
,
N. N.
, and
Dalai
,
A. K.
,
2008
, “
Production of Hydrogen and Syngas Via Steam Gasification of Glycerol in a Fixed-Bed Reactor
,”
Top. Catal.
,
49
(
1–2
), pp.
59
67
.
60.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.