The modularity and high efficiency at small-scale make high temperature (HT) fuel cells an interesting solution for carbon capture and utilization at the distributed generation (DG) scale when coupled to appropriate use of CO2 (i.e., for industrial uses, local production of chemicals, etc.). The present work explores fully electrochemical power systems capable of producing a highly pure CO2 stream and hydrogen. In particular, the proposed system is based upon integrating a solid oxide fuel cell (SOFC) with a molten carbonate fuel cell (MCFC). The use of these HT fuel cells has already been separately applied in the past for carbon capture and storage (CCS) applications. However, their combined use is yet unexplored. The reference configuration proposed envisions the direct supply of the SOFC anode outlet to a burner which, using the cathode depleted air outlet, completes the oxidation of the unconverted species. The outlet of the burner is then fed to the MCFC cathode inlet, which separates the CO2 from the stream. This layout has the significant advantage of achieving the required CO2 purity for liquefaction and long-range transportation without requiring the need of cryogenic or distillation plants. Furthermore, different configurations are considered with the final aim of increasing the carbon capture ratio (CCR) and maximizing the electrical efficiency. Moreover, the optimal power ratio between SOFC and MCFC stacks is also explored. Complete simulation results are presented, discussing the proposed plant mass and energy balances and showing the most attractive configurations from the point of view of total efficiency and CCR.

References

References
1.
IEA
,
2016
, “
Energy, Climate Change & Environment—2016 Insights
,”
International Energy Agency
, Paris, France.http://www.iea.org/publications/freepublications/publication/ECCE2016.pdf
2.
University of California
, 2016, “
Carbon Neutrality Initiative
,” University of California, San Diego, CA, accessed Nov. 9, 2016, www.ucop.edu/initiatives/carbon-neutrality-initiative.html
3.
McLarty
,
D.
,
Civit Sabate
,
C.
,
Brouwer
,
J.
, and
Jabbari
,
F.
,
2015
, “
Micro-Grid Energy Dispatch Optimization and Predictive Control Algorithms; A UC Irvine Case Study
,”
Int. J. Electr. Power Energy Syst.
,
65
, pp.
179
190
.
4.
Zhao
,
L.
, and
Brouwer
,
J.
,
2015
, “
Dynamic Operation and Feasibility Study of a Self-Sustainable Hydrogen Fueling Station Using Renewable Energy Sources
,”
Int. J. Hydrogen Energy
,
40
(
10
), pp.
3822
3837
.
5.
Mastropasqua
,
L.
,
Campanari
,
S.
,
Iora
,
P.
, and
Romano
,
M. C.
,
2015
, “
Simulation of Intermediate-Temperature SOFC for 60%+ Efficiency Distributed Generation
,”
ASME
Paper No. FUELCELL2015-49373.
6.
Mastropasqua
,
L.
,
Campanari
,
S.
,
Valenti
,
G.
,
Guariniello
,
A.
,
Modena
,
S.
, and
Ghigliazza
,
F.
,
2016
, “
Testing and Preliminary Modelling of a 2.5 kW Micro-CHP SOFC Unit
,”
ASME
Paper No. FUELCELL2016-59327.
7.
Campanari
,
S.
,
Mastropasqua
,
L.
,
Gazzani
,
M.
,
Chiesa
,
P.
, and
Romano
,
M. C.
,
2016
, “
Predicting the Ultimate Potential of Natural Gas SOFC Power Cycles With CO2 Capture—Part A: Methodology and Reference Cases
,”
J. Power Sources
,
324
, pp.
598
614
.
8.
Campanari
,
S.
,
Mastropasqua
,
L.
,
Gazzani
,
M.
,
Chiesa
,
P.
, and
Romano
,
M. C.
,
2016
, “
Predicting the Ultimate Potential of Natural Gas SOFC Power Cycles With CO2 Capture—Part B: Applications
,”
J. Power Sources
,
325
, pp.
194
208
.
9.
Rinaldi
,
G.
,
McLarty
,
D.
,
Brouwer
,
J.
,
Lanzini
,
A.
, and
Santarelli
,
M.
,
2015
, “
Study of CO2 Recovery in a Carbonate Fuel Cell Tri-Generation Plant
,”
J. Power Sources
,
284
, pp.
16
26
.
10.
Chiesa
,
P.
,
Campanari
,
S.
, and
Manzolini
,
G.
,
2011
, “
CO2 Cryogenic Separation From Combined Cycles Integrated With Molten Carbonate Fuel Cells
,”
Int. J. Hydrogen Energy
,
36
(
16
), pp.
10355
10365
.
11.
Adams
,
T. A.
, and
Barton
,
P. I.
,
2010
, “
High-Efficiency Power Production From Natural Gas With Carbon Capture
,”
J. Power Sources
,
195
(
7
), pp.
1971
1983
.
12.
Rokni
,
M.
,
2010
, “
Plant Characteristics of an Integrated Solid Oxide Fuel Cell Cycle and a Steam Cycle
,”
Energy
,
35
(
12
), pp.
4691
4699
.
13.
Rokni
,
M.
,
2010
, “
Thermodynamic Analysis of an Integrated Solid Oxide Fuel Cell Cycle With a Rankine Cycle
,”
Energy Convers. Manag.
,
51
(
12
), pp.
2724
2732
.
14.
Campanari
,
S.
,
Chiesa
,
P.
,
Manzolini
,
G.
, and
Bedogni
,
S.
,
2014
, “
Economic Analysis of CO2 Capture From Natural Gas Combined Cycles Using Molten Carbonate Fuel Cells
,”
Appl. Energy
,
130
, pp.
562
573
.
15.
Elmer
,
T.
,
Worall
,
M.
,
Wu
,
S.
, and
Riffat
,
S. B.
,
2015
, “
Emission and Economic Performance Assessment of a Solid Oxide Fuel Cell Micro-Combined Heat and Power System in a Domestic Building
,”
Appl. Therm. Eng.
,
90
, pp.
1082
1089
.
16.
Curletti
,
F.
,
Gandiglio
,
M.
,
Lanzini
,
A.
,
Santarelli
,
M.
, and
Maréchal
,
F.
,
2015
, “
Large Size Biogas-Fed Solid Oxide Fuel Cell Power Plants With Carbon Dioxide Management: Technical and Economic Optimization
,”
J. Power Sources
,
294
, pp.
669
690
.
17.
Gandiglio
,
M.
,
Lanzini
,
A.
,
Leone
,
P.
,
Santarelli
,
M.
, and
Borchiellini
,
R.
,
2013
, “
Thermoeconomic Analysis of Large Solid Oxide Fuel Cell Plants: Atmospheric vs. Pressurized Performance
,”
Energy
,
55
, pp.
142
155
.
18.
Li
,
M.
,
Rao
,
A. D.
,
Brouwer
,
J.
, and
Samuelsen
,
G. S.
,
2010
, “
Design of Highly Efficient Coal-Based Integrated Gasification Fuel Cell Power Plants
,”
J. Power Sources
,
195
(
17
), pp.
5707
5718
.
19.
Barelli
,
L.
,
Bidini
,
G.
,
Campanari
,
S.
,
Discepoli
,
G.
, and
Spinelli
,
M.
,
2016
, “
Performance Assessment of Natural Gas and Biogas Fueled Molten Carbonate Fuel Cells in Carbon Capture Configuration
,”
J. Power Sources
,
320
, pp.
332
342
.
20.
Duan
,
L.
,
Xia
,
K.
,
Feng
,
T.
,
Jia
,
S.
, and
Bian
,
J.
,
2016
, “
Study on Coal-Fired Power Plant With CO2 Capture by Integrating Molten Carbonate Fuel Cell System
,”
Energy
,
117
(
Part 2
), pp.
578
589
.
21.
Duan
,
L.
,
Yue
,
L.
,
Feng
,
T.
,
Lu
,
H.
, and
Bian
,
J.
,
2016
, “
Study on a Novel Pressurized MCFC Hybrid System With CO2 Capture
,”
Energy
,
109
, pp.
737
750
.
22.
Rexed
,
I.
,
Della Pietra
,
M.
,
McPhail
,
S.
,
Lindbergh
,
G.
, and
Lagergren
,
C.
,
2015
, “
Molten Carbonate Fuel Cells for CO2 Separation and Segregation by Retrofitting Existing Plants—An Analysis of Feasible Operating Windows and First Experimental Findings
,”
Int. J. Greenhouse Gas Control
,
35
, pp.
120
130
.
23.
Spallina
,
V.
,
Romano
,
M. C.
,
Campanari
,
S.
, and
Lozza
,
G.
,
2012
, “
Application of MCFC in Coal Gasification Plants for High Efficiency CO2 Capture
,”
ASME J. Eng. Gas Turbines Power
,
134
(
1
), p.
011701
.
24.
Spinelli
,
M.
,
Romano
,
M. C.
,
Consonni
,
S.
,
Campanari
,
S.
,
Marchi
,
M.
, and
Cinti
,
G.
,
2014
, “
Application of Molten Carbonate Fuel Cells in Cement Plants for CO2 Capture and Clean Power Generation
,”
Energy Procedia
,
63
, pp.
6517
6526
.
25.
ExxonMobil and FuelCell Energy, Inc.
,
2016
, “
ExxonMobil, FuelCell Energy Trial MCFCs in Carbon Capture
,”
Fuel Cells Bull.
,
2016
(
5
), pp.
12
13
.
26.
Hill
,
R.
,
Scott
,
S.
,
Butler
,
D.
,
Sit
,
S. P.
,
Burt
,
D.
,
Narayanan
,
R.
,
Cole
,
T.
,
Li
,
C.
,
Lightbown
,
V.
, and
John Zhou
,
Z.
,
2015
, “
Application of Molten Carbonate Fuel Cell for CO2 Capture in Thermal in Situ Oil Sands Facilities
,”
Int. J. Greenhouse Gas Control
,
41
, pp.
276
284
.
27.
Li
,
B.
,
He
,
G.
,
Jiang
,
X.
,
Dai
,
Y.
, and
Ruan
,
X.
,
2016
, “
Pressure Swing Adsorption/Membrane Hybrid Processes for Hydrogen Purification With a High Recovery
,”
Front. Chem. Sci. Eng.
,
10
(
2
), pp.
255
264
.
28.
Consonni
,
S.
,
Lozza
,
G.
,
Macchi
,
E.
, and
Chiesa
,
P.
,
1991
, “
Gas-Turbine-Based Advanced Cycles for Power Generation—Part A: Calculation Model
,”
International Gas Turbine Conference
, Yokohama, Japan, Oct. 27–Nov. 1, pp.
201
210
.
29.
Lozza
,
G.
,
1990
, “
Bottoming Steam Cycles for Combined Gas-Steam Power Plants. A Theoretical Estimation of Steam Turbine Performances and Cycle Analysis
,” ASME COGEN-TURBO 4th International Symposium on Gas Turbines Cogeneration Repowering Peak-Load Power Generation, New Orleans, LA, pp. 83–92.
30.
Chiesa
,
P.
,
Consonni
,
S.
, and
Kreutz
,
T.
,
2005
, “
Co-Production of Hydrogen, Electricity and CO From Coal With Commercially Ready Technology—Part A: Performance and Emissions
,”
Int. J. Hydrogen Energy
,
30
(
7
), pp.
747
767
.
31.
Campanari
,
S.
,
Iora
,
P.
,
Silva
,
P.
, and
Macchi
,
E.
,
2007
, “
Thermodynamic Analysis of Integrated Molten Carbon Fuel Cell–Gas Turbine Cycles for Sub-MW and Multi-MW Scale Power Generation
,”
ASME J. Fuel Cell Sci. Technol.
,
4
(
3
), p.
308
.
32.
Campanari
,
S.
, and
Macchi
,
E.
,
1998
, “
Thermodynamic Analysis of Advanced Power Cycles Based Upon Solid Oxide Fuel Cells, Gas Turbines and Rankine Bottoming Cycles
,”
ASME
Paper No. 98-GT-585.
33.
Stull
,
D. R.
, and
Prophet
,
H.
,
1971
, “
JANAF Thermochemical Tables
,” National Standard Reference Data System, Washington, DC.
34.
Schmidt
,
E.
,
1982
,
Properties of Water and Steam in S.I. Units
,
3rd ed.
,
Springer-Verlag
,
Berlin
.
35.
Föger
,
K.
, and
Rowe
,
T.
,
2009
, “
Ultra-High-Efficiency Residential Power System
,”
Third European Fuel Cell Technology Applications Conference
, Rome, Italy, Dec. 15–18.
36.
Spinelli
,
M.
,
Campanari
,
S.
,
Romano
,
M. C.
,
Consonni
,
S.
,
Kreutz
,
T. G.
,
Ghezel-Ayagh
,
H.
,
Jolly
,
S.
, and
Di Nitto
,
M.
,
2015
, “
Molten Carbonate Fuel Cells as Means for Post-Combustion CO2 Capture: Retrofitting Coal-Fired Steam Plants and Natural Gas-Fired Combined Cycles
,”
ASME
Paper No. FUELCELL2015-49454.
37.
Besagni
,
G.
,
Mereu
,
R.
,
Chiesa
,
P.
, and
Inzoli
,
F.
,
2015
, “
An Integrated Lumped Parameter-CFD Approach for Off-Design Ejector Performance Evaluation
,”
Energy Convers. Manage.
,
105
, pp.
697
715
.
38.
Peng
,
D.-Y.
, and
Robinson
,
D. B.
,
1976
, “
A New Two-Constant Equation of State
,”
Ind. Eng. Chem. Fundam.
,
15
(
1
), pp.
59
64
.
39.
Ferrari
,
M. L.
,
Traverso
,
A.
,
Magistri
,
L.
, and
Massardo
,
A. F.
,
2005
, “
Influence of the Anodic Recirculation Transient Behaviour on the SOFC Hybrid System Performance
,”
J. Power Sources
,
149
, pp.
22
32
.
40.
Anantharaman
,
R.
,
Bolland
,
O.
,
Booth
,
N.
,
Van Dorst
,
E.
,
Ekstrom
,
C.
,
Fernandez
,
S.
,
Franco
,
F.
,
Macchi
,
E.
,
Manzolini
,
G.
,
Nikolic
,
D.
,
Pfeffer
,
A.
,
Prins
,
M.
,
Sina
,
R.
, and
Laurence
,
R.
,
2011
, “
European Best Practice Guidelines for Assessment of CO2 Capture Technologies
,” CAESAR Consortium, Petten, The Netherlands, Project no.
213206
http://www.energia.polimi.it/news/D%204_9%20best%20practice%20guide.pdf.
41.
Astolfi
,
M.
,
Romano
,
M. C.
,
Bombarda
,
P.
, and
Macchi
,
E.
,
2014
, “
Binary ORC (Organic Rankine Cycles) Power Plants for the Exploitation of Medium-Low Temperature Geothermal Sources—Part B: Techno-Economic Optimization
,”
Energy
,
66
, pp.
435
446
.
42.
NIST
,
2016
, “
REFPROP
,” National Institute of Standards and Technology, Gaithersburg, MD, accessed Sept. 1, 2017, https://www.nist.gov/srd/refprop
43.
Brown
,
T.
,
Stephens-Romero
,
S.
, and
Scott Samuelsen
,
G.
,
2012
, “
Quantitative Analysis of a Successful Public Hydrogen Station
,”
Int. J. Hydrogen Energy
,
37
(
17
), pp.
12731
12740
.
44.
N.R. Programmes
,
2012
, “
Directive 2012/27/EU of the European Parliament and of the Council of 25 October 2012 on Energy Efficiency, Amending Directives 2009/125/EC and 2010/30/EU and Repealing Directives 2004/8/EC and 2006/32/EC
,”
European Commission
, Brussels, Belgium.http://www.eib.org/epec/ee/publications/category/eu_legislation/directive-2012-27-eu-of-the-ep-and-of-the-council-25-october%202012.htm
45.
Campanari
,
S.
,
Valenti
,
G.
,
Macchi
,
E.
,
Lozza
,
G.
, and
Ravidà
,
N.
,
2013
, “
Development of a Micro-Cogeneration Laboratory and Testing of a Natural Gas CHP Unit Based on PEM Fuel Cells
,”
Appl. Therm. Eng.
,
71
(
2
), pp.
714
720
.
You do not currently have access to this content.