Erosive damage done to jet engine compressor blading by solid particles has a negative influence on the compressor aerodynamic properties and hence decreases performance. The erosive change of shape has been investigated in a multitude of experiments ranging from eroding flat plates to eroding full engines. The basic challenge to transfer the results from very simple tests to real life erosion remains. Up to date measurement techniques today allow closing this gap. The necessary experimental and analytical steps are shown. The erosion resistance of Ti–6Al–4V at realistic flow conditions with fluid velocities ranging from 200 to 400 m/s is used. The erodent used was quartz sand with a size distribution corresponding to standardized Arizona Test Dust A3 (1–120 μm). Flat plates out of Ti–6Al–4V were eroded at different impingement angles. The particle velocities and sizes were investigated using a high-speed laser shadowgraphy technique. A dimensional analysis was carried out to obtain nondimensional parameters suitable for describing erosion. Different averaging methods of the particle velocity were examined in order to identify a representative particle velocity. Compared to the fluid velocity and the mean particle velocity, the energy averaged particle velocity is found to be the best representation of the erosiveness of a particle stream. The correlations derived from the dimensional analysis are capable of precisely predicting erosion rates for different rig operating points (OPs). The results can be applied to the methodology published by Schrade et al. (2015, “Experimental and Numerical Investigation of Erosive Change of Shape for High-Pressure Compressors,” ASME Paper No. GT2015-42061).

References

1.
Oka
,
Y. I.
,
Okamura
,
K.
, and
Yoshida
,
T.
,
2005
, “
Practical Estimation of Erosion Damage Caused by Solid Particle Impact
,”
Wear
,
259
(
1–6
), pp.
95
101
.
2.
Grant
,
G.
, and
Tabakoff
,
W.
,
1973
, “
An Experimental Investigation of the Erosive Characteristics of 2024 Aluminum Alloy
,” National Technical Information Service, U.S. Department of Commerce, Alexandria, VA, Technical Report No. 73-37.
3.
Finnie
,
I.
,
1972
, “
Some Observations on the Erosion of Ductile Metals
,”
Wear
,
19
(
1
), pp.
81
90
.
4.
Meng
,
H. C.
, and
Ludema
,
K. C.
,
1995
, “
Wear Models and Predictive Equations: Their Form and Content
,”
Wear
,
181–183
,(Pt. 2) pp.
443
457
.
5.
Smitzer
,
1979
, “
Mechanisms of Sand and Dust Erosion in Gas Turbine Engines
,” National Technical Information Service, U.S. Department of Commerce, Alexandria, VA, USAAVLABS Technical Report No. 70-36.
6.
Schrade
,
M.
,
Staudacher
,
S.
, and
Voigt
,
M.
,
2015
, “
Experimental and Numerical Investigation of Erosive Change of Shape for High-Pressure Compressors
,”
ASME
Paper No. GT2015-42061.
7.
Schrade
,
M.
,
2016
,
Untersuchungen zum Einfluss des Strahlverschleißes auf Hochdruckverdichterschaufeln von Turboflugtriebwerken
, 1. Auflage ed.,
Verlag Dr. Hut
,
München, Germany
.
8.
Dosanjh
,
S.
, and
Humphrey
,
J. A.
,
1985
, “
The Influence of Turbulence on Erosion by a Particle-Laden Fluid Jet
,”
Wear
,
102
(
4
), pp.
309
330
.
9.
Laitone
,
J. A.
,
1979
, “
Aerodynamic Effects in the Erosion Process
,”
Wear
,
56
(
1
), pp.
239
246
.
10.
Finnie
,
I.
,
1995
, “
Some Reflections on the Past and Future of Erosion
,”
Wear
,
186–187
(Pt. 1), pp.
1
10
.
11.
Hamed
,
A.
,
Tabakoff
,
W. C.
, and
Wenglarz
,
R. V.
,
2006
, “
Erosion and Deposition in Turbomachinery
,”
J. Propul. Power
,
22
(
2
), pp.
350
360
.
12.
Kleis
,
I.
, and
Kulu
,
P.
,
2008
,
Solid Particle Erosion
,
Springer
,
London
.
13.
Bitter
,
J.
,
1963
, “
A Study of Erosion Phenomena—Part I
,”
Wear
,
6
(
1
), pp.
5
21
.
14.
Neilson
,
J. H.
, and
Gilchrist
,
A.
,
1968
, “
Erosion by a Stream of Solid Particles
,”
Wear
,
11
(
2
), pp.
111
122
.
15.
Clark
,
H. M.
,
Tuzson
,
J.
, and
Wong
,
K. K.
,
2000
, “
Measurements of Specific Energies for Erosive Wear Using a Coriolis Erosion Tester
,”
Wear
,
241
(
1
), pp.
1
9
.
16.
Misra
,
A.
, and
Finnie
,
I.
,
1981
, “
On the Size Effect in Abrasive and Erosive Wear
,”
Wear
,
65
(
3
), pp.
359
373
.
17.
Zhou
,
J. R.
, and
Bahadur
,
S.
,
1989
, “
Effect of Blending of Silicon Carbide Particles in Varying Sizes on the Erosion of Ti-6Al-4V
,”
Wear
,
132
(
2
), pp.
235
246
.
18.
Bahadur
,
S.
, and
Badruddin
,
R.
,
1990
, “
Erodent Particle Characterization and the Effect of Particle Size and Shape on Erosion
,”
Wear
,
138
(
1–2
), pp.
189
208
.
19.
Goodwin
,
J. E.
,
Sage
,
W.
, and
Tilly
,
G. P.
,
1969
, “
Study of Erosion by Solid Particles
,”
Proc. Inst. Mech. Eng.
,
184
, pp.
279
292
.
20.
Srinivasan
,
S.
, and
Scattergood
,
R. O.
,
1988
, “
Effect of Erodent Hardness on Erosion of Brittle Materials
,”
Wear
,
128
(
2
), pp.
139
152
.
21.
Schrade
,
M.
, and
Staudacher
,
S.
,
2014
, “
High-Speed Test Rig for the Investigation of Erosion Damage of Axial Compressor Blades
,” Deutscher Luft- und Raumfahrtkongress, Augsburg, Germany, Paper No. DLRK2014_340033.
22.
Sheldon
,
G. L.
,
1977
, “
Effects of Surface Hardness and Other Material Properties on Erosive Wear of Metals by Solid Particles
,”
ASME J. Eng. Mater. Technol.
,
99
(
2
), pp.
133
137
.
23.
Zhou
,
J.
, and
Bahadur
,
S.
,
1995
, “
Erosion-Corrosion of Ti-6Al-4V in Elevated Temperature Air Environment
,”
Wear
,
186–187
(Pt. 1), pp.
332
339
.
24.
Hutchings
,
I. M.
,
1975
, “
Prediction of the Resistance of Metals to Erosion by Solid Particles
,”
Wear
,
35
(
2
), pp.
371
374
.
25.
Smeltzer
,
C. E.
,
Gulden
,
M. E.
, and
Compton
,
W. A.
,
1970
, “
Mechanisms of Metal Removal by Impacting Dust Particles
,”
J. Basic Eng.
,
92
(
3
), pp.
639
652
.
26.
Oka
,
Y.
,
Nishimura
,
M.
,
Nagahashi
,
K.
, and
Matsumura
,
M.
,
2001
, “
Control and Evaluation of Particle Impact Conditions in a Sand Erosion Test Facility
,”
Wear
,
250
(
1–12
), pp.
736
743
.
27.
Marx
,
W.
,
1983
,
Berechnung der Gestaltänderung von Profilen Infolge Strahlverschleiß
(IPA Forschung und Praxis, Berichte aus dem Fraunhofer-Institut für Produktionstechnik und Automatisierung, Stuttgart, und dem Institut für Industrielle Fertigung und Fabrikbetrieb der Universität Stuttgart, Vol.
76
),
Springer
,
Berlin
.
28.
Wang
,
Y.-F.
, and
Yang
,
Z.-G.
,
2008
, “
Finite Element Model of Erosive Wear on Ductile and Brittle Materials
,”
Wear
,
265
(
5–6
), pp.
871
878
.
29.
ElTobgy
,
M. S.
,
Ng
,
E.
, and
Elbestawi
,
M. A.
,
2005
, “
Finite Element Modeling of Erosive Wear
,”
Int. J. Mach. Tools Manuf.
,
45
(
11
), pp.
1337
1346
.
30.
Hashish
,
M.
,
1984
, “
A Modeling Study of Metal Cutting With Abrasive Waterjets
,”
ASME J. Eng. Mater. Technol.
,
106
(
1
), pp.
88
100
.
31.
Zapp AG
,
2016
, “
Specialty Materials TiAl6V4 Grade 5
,” Zapp Materials Engineering GmbH, Ratingen, Germany, Standard No.
ISO 5832-3
.http://www.rsalloys.eu/cmsMateriali/produzioni/47/TiAl6V4_e_02.12.pdf
32.
KSL Staubtechnik GmbH
, 2016, “
Arizona Dust Quartz
,” KSL Staubtechnik GmbH, Lauingen, Germany, Standard No. ISO 12103-1.
33.
ISO
,
2016
, “
Road Vehicles Test Contaminants for Filter Evaluation—Part 1: Arizona Test Dust
,” International Organization for Standardization, Geneva, Switzerland, Standard No.
ISO 12103-1
.https://www.iso.org/standard/63386.html
34.
Kapulla
,
R.
,
Tuchtenhagen
,
J.
,
Müller
,
A.
,
Dullenkopf
,
K.
, and
Bauer
,
H.-J.
,
2008
, “
Droplet Sizing Performance of Different Shadow Sizing Codes
,” Society for Laser Anemometry-GALA, Karlsruhe, Germany, Sept. 9–11.
35.
LaVision
,
2012
, “
Particlemaster Shadow Product-Manual 8.1
,” LaVision GmbH, Goettingen, Germany.
36.
Kim
,
K. S.
, and
Kim
,
S.-S.
,
1994
, “
Drop Sizing and Depth-of-Field Correction in TV Imaging
,”
Atomization Sprays
,
4
(
1
), pp.
65
78
.
37.
Lee
,
S. Y.
, and
Kim
,
Y. D.
,
2004
, “
Sizing of Spray Particles Using Image Processing Technique
,”
KSME Int. J.
,
18
(
6
), pp.
879
894
.
38.
ISO
,
2014
, “
Representation of Results of Particle Size Analysis—Part 2: Calculation of Average Particle Sizes/Diameters and Moments From Particle Size Distributions
,” International Organization for Standardization, Geneva, Switzerland, Standard No.
ISO 9276-2
.https://www.iso.org/standard/57641.html
39.
Merkus
,
H. G.
,
2009
,
Particle Size Measurements: Fundamentals, Practice, Quality
(Particle Technology Series, Vol.
17
),
Springer
,
Dordrecht, The Netherlands
.
40.
Li
,
H. Z.
,
Wang
,
J.
, and
Fan
,
J. M.
,
2009
, “
Analysis and Modelling of Particle Velocities in Micro-Abrasive Air jet
,”
Int. J. Mach. Tools Manuf.
,
49
(
11
), pp.
850
858
.
41.
Fletcher
,
R. A.
, and
Bright
,
D. S.
,
2000
, “
Shape Factors of ISO 12103-A3 (Medium Test Dust)
,”
Filtr. Sep.
,
37
(
9
), pp.
48
56
.
42.
Solnordal
,
C. B.
, and
Wong
,
C. Y.
,
2012
, “
Predicting Surface Profile Evolution Caused by Solid Particle Erosion
,”
Ninth International Conference on CFD in the Minerals and Process Industries
, Melbourne, Australia, Dec. 10–12, pp. 10–12.http://www.cfd.com.au/cfd_conf12/PDFs/054SOL.pdf
You do not currently have access to this content.