The force acting on centrifugal compressors is an important parameter to be considered throughout the operating life of these turbomachines. When the compressor is operating in surge conditions, these forces can become highly dangerous for the mechanical and aerodynamic structures. This instability is usually avoided in industrial applications, but the antisurge system may not react in time when emergency shutdowns or power failures take place. During these rapid transients, surge can develop, generating unsteady forces which can harm the close clearance components of the compressor. Therefore, the capability to predict the characteristics and the dynamics of these surge forces would allow the estimation of the off-design fatigue cycles produced on these components by surge. Currently, no validated method exists to predict the frequency and amplitude of the surge forces and determine the potential damage of these components. In this paper, a lumped parameter model, developed by using the bond graph approach to predict the dynamic surge fluid-dynamic oscillations, is presented. The model requires the geometry and the steady-state performance maps of the compressor as inputs, together with the piping system configuration characteristics. The simulator is provided with a supplementary tool to estimate the axial force frequency and amplitude, taking into consideration all the contributions to the axial fluid-dynamic thrust, the stiffness-damping of the thrust bearing, and the mass of the rotor. The model was tuned and validated using the test case axial force data from the Southwest Research Institute (SWRI) facility. The model has shown good agreement with the experimental results which implies that it can offer significant information about the severity of a surge event and the quantification of the machine performance losses together with possible damage to the close clearance components. This study is a first important step that can lead to schedule optimization for maintenance and repair activities.

References

1.
Rasmussen
,
P. C.
, and
Kurz
,
R.
,
2009
, “
Centrifugal Compressor Applications—Upstream and Midstream
,”
38th Turbo Machinery Symposium
, Houston, TX, Sept. 14–19, pp.
14
17
.https://pdfs.semanticscholar.org/f81a/a400b6aae2f7b30d9eea2eaa89294e593c04.pdf
2.
Kurz
,
R.
, and
Brun
,
K.
,
2005
, “
Site Performance Test Evaluation for Gas Turbine and Electric Motor Driven Compressors
,”
34th Turbomachinery Symposium
, Houston, TX, Dec. 12–15, pp.
53
62
.https://pdfs.semanticscholar.org/f18d/7c2b6497ddad8c468bf599fb6b498f0938e8.pdf
3.
Kurz
,
R.
,
2005
, “
Gas Turbine Performance
,”
34th Turbomachinery Symposium
, Houston, TX, Dec. 12–15.https://pdfs.semanticscholar.org/acb6/9eb6d21d0494553a8dbccacfdedb9b71dcef.pdf
4.
Boyce
,
M. P.
,
2003
,
Centrifugal Compressors: A Basic Guide
,
PlennWell Books
,
Austin, TX
.
5.
Moore
,
J. J.
,
Ransom
,
D. L.
, and
Viana
,
F.
,
2011
, “
Rotordynamic Force Prediction of Centrifugal Compressor Impellers Using Computational Fluid Dynamics
,”
ASME J. Eng. Gas Turbines Power
,
133
(
4
), p.
042504
.
6.
Lüddecke
,
B.
,
Nitschke
,
P.
,
Dietrich
,
M.
,
Filsinger
,
D.
, and
Bargende
,
M.
,
2016
, “
Unsteady Thrust Force Loading of a Turbocharger Rotor During Engine Operation
,”
ASME J. Eng. Gas Turbines Power
,
138
(
1
), p.
012301
.
7.
Kurz
,
R.
,
Marechale
,
R. K.
,
Fowler
,
E. J.
,
Ji
,
M.
, and
Cave
,
M. J.
,
2011
, “
Operation of Centrifugal Compressors in Choke Conditions
,”
Asia Turbomachinery & Pump Symposium
(
ATPS
), Houston, TX, Feb. 22–25.http://oaktrust.library.tamu.edu/bitstream/handle/1969.1/160258/ATPS2016L14.pdf?sequence=1
8.
Cumpsty
,
N. A.
,
1989
,
Compressor Aerodynamics
,
Longman Scientific & Technical
,
Harlow, UK
.
9.
Munari
,
E.
,
Morini
,
M.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2016
, “
Experimental Investigation and Modeling of Surge in a Multistage Compressor
,”
Eighth International Conference on Applied Energy
(
ICAE
), Beijing, China, Oct. 8–10.http://ac.els-cdn.com/S1876610217305441/1-s2.0-S1876610217305441-main.pdf?_tid=8aecec1c-88a4-11e7-9685-00000aab0f01&acdnat=1503562774_b0355c255b19b0f758f13d5561ada4a3
10.
Greitzer
,
E. M.
,
1976
, “
Surge and Rotating Stall in Axial Flow Compressors—Part I: Theoretical Compression System Model
,”
J. Eng. Power
,
98
(
2
), pp.
190
198
.
11.
Morini
,
M.
,
Pinelli
,
M.
, and
Venturini
,
M.
,
2007
, “
Development of a One-Dimensional Modular Dynamic Model for the Simulation of Surge in Compression Systems
,”
ASME J. Turbomach.
,
129
(
3
), pp.
437
447
.
12.
Galindo
,
J.
,
Serrano
,
J. R.
,
Climent
,
H.
, and
Tiseira
,
A.
, “
Experiments and Modelling of Surge in Small Centrifugal Compressor for Automotive Engines
,”
Exp. Therm. Fluid Sci.
,
32
(
3
), pp.
818
826
.
13.
Vepa
,
R.
,
2010
, “
Modelling and Quasilinear Control of Compressor Surge and Rotating Stall Vibrations
,”
Math. Probl. Eng.
,
2010
, p.
314172
.
14.
Moore
,
F. K.
, and
Greitzer
,
E. M.
,
1986
, “
A Theory of Post-Stall Transients in Axial Compression Systems—Part I: Development of Equations
,”
ASME J. Eng. Gas Turbines Power
,
108
(
1
), pp.
68
76
.
15.
Day
,
I. J.
,
2016
, “
Stall, Surge, and 75 Years of Research
,”
ASME J. Turbomach.
,
138
(
1
), p.
011001
.
16.
Pearson
,
H.
, and
McKenzie
,
A. B.
,
1959
, “
Wakes in Axial Compressors
,”
J. R. Aeronaut. Soc.
,
63
(
583
), pp.
415
416
.
17.
Cousins
,
W. T.
, and
Davis
,
M. W.
, Jr.
,
2011
, “
Evaluating Complex Inlet Distortion With a Parallel Compressor Model—Part 1: Concepts, Theory, Extensions, and Limitations
,”
ASME
Paper No. GT2011-45067.
18.
Mazzawy
,
R. S.
,
1977
, “
Multiple Segment Parallel Compressor Model for Circumferential Flow Distortion
,”
ASME J. Eng. Power
,
99
(
2
), pp.
288
296
.
19.
Floyd
,
R. S.
, Jr.
, and
Davis
,
M.
, Jr.
,
2015
, “
Validation of a Modified Parallel Compressor Model for Prediction of the Effects of Inlet Swirl on Compressor Performance and Operability
,”
ASME
Paper No. GT2015-43415.
20.
Grong
,
T. S.
,
2009
, “
Modeling of Compressor Characteristics and Active Surge Control
,”
Ph.D. thesis
, Norwegian University of Science and Technology, Trondheim, Norway.
21.
Belardini
,
E.
,
Pandit
,
R.
,
Satish Koyyalamudi
,
V. V. N. K.
,
Rubino
,
D. T.
, and
Tapinassi
,
L.
,
2016
, “
2nd Quadrant Centrifugal Compressor Performance—Part II
,”
ASME
Paper No. GT2016-57124.
22.
Leufvén
,
O.
, and
Eriksson
,
L.
,
2013
, “
A Surge and Choke Capable Compressor Flow Model-Validation and Extrapolation Capability
,”
Control Eng. Pract.
,
21
(
12
), pp.
1871
1883
.
23.
Kilchyk
,
V.
,
Abdelwahab
,
A.
, and
Rosinski
,
A.
,
2013
, “
Application of the Surge Model to Radial Compressor System Cycle Optimization
,”
ASME
Paper No. GT2013-94222.
24.
Yoon
,
S. Y.
,
Lin
,
Z.
,
Lim
,
K. T.
,
Goyne
,
C.
, and
Allaire
,
P. E.
,
2010
, “
Model Validation for an Active Magnetic Bearing Based Compressor Surge Control Test Rig
,”
ASME J. Vib. Acoust.
,
132
(
6
), p.
061005
.
25.
Domm
,
U.
, and
Zilling
,
H.
,
1966
, “
Axial Thrust in Centrifugal Pumps
,”
IAHR Symposium Pumps in Power Stations
, Braunschweig, Germany, pp.
J23
J34
.
26.
Kurokawa
,
J.
, and
Toyokura
,
T.
,
1972
, “
Study on the Axial Thrust of the Radial Flow Turbomachinery
,”
The Second International JSME Symposium, Fluid Machinery and Fluidics
, Tokyo, Japan, Sept. 4–9, Paper No.
BA67442745
http://jairo.nii.ac.jp/0009/00005282/en.
27.
Mazzawy
,
R. S.
,
1980
, “
Surge Induced Structural Loads in Gas Turbines
,”
J. Eng. Power
,
102
(
1
), pp.
162
168
.
28.
Bondarenko
,
G. A.
,
Ganelin
,
B. Y.
, and
Marufenko
,
T. M.
,
1992
, “
Method of Calculating Axial Forces in a Centrifugal Compressor Based on a Refined Model of Flow
,”
Chem. Pet. Eng.
,
28
(
2
), pp.
81
85
.
29.
Baldassarre
,
L.
,
Bernocchi
,
A.
,
Rizzo
,
E.
,
Fontana
,
M.
, and
Maiuolo
,
F.
,
2015
, “
Axial Thrust in High Pressure Centrifugal Compressors: Description of a Calculation Model Validated by Experimental Data From Full Load Test
,”
44th Turbomachinery & 31st Pump User Symposia
(
Pump & Turbo
), Houston, TX, Sept. 14–17.http://turbolab.tamu.edu/proc/turboproc/T44/L11.pdf
30.
Da Soghe
,
R.
,
Facchini
,
B.
,
Innocenti
,
L.
, and
Micio
,
M.
,
2009
, “
Analysis of Gas Turbine Rotating Cavities by an One-Dimensional Model
,”
ASME
Paper No. GT2009-59185.
31.
Han
,
Z.-X.
, and
Cizmas
,
P. G. A.
,
2003
, “
A CFD Method for Axial Thrust Load Prediction of Centrifugal Compressors
,”
Int. J. Turbo Jet Eng.
,
20
(
1
), pp.
1
16
.
32.
Bidaut
,
Y.
, and
Dessibourg
,
D.
,
2014
, “
The Challenge for the Accurate Determination of the Axial Rotor Thrust in Centrifugal Compressors
,”
43rd Turbomachinery & 30th Pump Users Symposia
(
Pump & Turbo
), Houston, TX, Sept. 22–25.http://oaktrust.library.tamu.edu/handle/1969.1/160254
33.
Baumann
,
U.
,
1999
, “
Rotordynamic Stability Tests on High-Pressure Radial Compressors
,”
28th Turbomachinery Symposium
, Houston, TX, Sept., pp. 115–122.http://turbolab.tamu.edu/proc/turboproc/T28/Vol28011.pdf
34.
Bidaut
,
Y.
,
Baumann
,
U.
, and
Al-Harthy
,
S. M. H.
,
2009
, “
Rotordynamic Stability of a 9500 psi Reinjection Centrifugal Compressor Equipped With a Hole Pattern Seal–Measurement Versus Prediction Taking Into Account the Operational Boundary Conditions
,”
38th Turbomachinery Symposium
, Houston, TX, Sept. 14–17, pp.
251
259
.https://pdfs.semanticscholar.org/4cd8/8aa7e9c736f6f9aaaf925680f5ff81da2818.pdf
35.
Petry
,
N.
,
König
,
S.
, and
Benra
,
F.-K.
,
2013
, “
Influence of the Swirling Flow in the Side Cavities of a High-Pressure Centrifugal Compressor on the Characteristics of Excited Acoustic Modes
,”
ASME J. Turbomach.
,
135
(
3
), p.
031024
.
36.
Roy
,
R. P.
,
Devasenathipathy
,
S.
,
Xu
,
G.
, and
Zhao
,
Y.
,
1999
, “
A Study of the Flow Field in a Model Rotor-Stator Disk Cavity
,”
ASME
Paper No. 99-GT-24.
37.
Li
,
W.
,
2013
, “
Model of Flow in the Side Chambers of an Industrial Centrifugal Pump for Delivering Viscous Oil
,”
ASME J. Fluids Eng.
,
135
(
5
), p.
051201
.
38.
Will
,
B. C.
,
2011
, “
Theoretical, Numerical and Experimental Investigation of the Flow in Rotor-Stator Cavities With Application to a Centrifugal Pump
,”
Ph.D. dissertation
, Universität Duisburg-Essen, Duisburg, Germany.https://duepublico.uni-duisburg-essen.de/servlets/DerivateServlet/Derivate-28954/Will_Diss.pdf
39.
Childs
,
P. R.
,
2011
,
Rotating Flow
,
Butterworth-Heinemann
,
Oxford, UK
.
40.
Hu
,
J.-P.
, and
Li
,
K.-J.
,
2015
, “
Thermal-Hydraulic Modeling and Analysis of Hydraulic System by Pseudo-Bond Graph
,”
J. Central South Univ.
,
22
(
7
), pp.
2578
2585
.
41.
Brown
,
F. T.
,
2006
,
Engineering System Dynamics: A Unified Graph-Centered Approach
,
CRC Press
,
Boca Raton, FL
.
42.
Uddin
,
N.
, and
Gravdahl
,
J. T.
,
2015
, “
Bond Graph Modeling of Centrifugal Compression Systems
,”
Simulation
,
91
(
11
), pp.
998
1013
.
43.
Krikelis
,
N. J.
, and
Papadakis
,
F.
,
1988
, “
Gas Turbine Modelling Using Pseudo-Bond Graphs
,”
Int. J. Syst. Sci.
,
19
(
4
), pp.
537
550
.
44.
Movaghar
,
A. S.
, and
Novinzadeh
,
A.
,
2011
, “
Ideal Turbo Charger Modeling and Simulation Using Bond Graph Approach
,”
ASME
Paper No. GT2011-46072.
45.
Munari
,
E.
,
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Suman
,
A.
,
2017
, “
Experimental Investigation of Stall and Surge in a Multistage Compressor
,”
ASME J. Eng. Gas Turbines Power
,
139
(
2
), p.
022605
.
46.
Rohsenow
,
W. M.
,
Hartnett
,
J. P.
, and
Cho
,
Y. I.
,
1998
,
Handbook of Heat Transfer
, Vol.
3
,
McGraw-Hill
,
New York
.
47.
Dixon
,
S. L.
, and
Hall
,
C.
,
2013
,
Fluid Mechanics and Thermodynamics of Turbomachinery
,
Butterworth-Heinemann
,
Oxford, UK
.
48.
Berdanier
,
R. A.
,
Smith
,
N. R.
,
Fabian
,
J. C.
, and
Key
,
N. L.
,
2015
, “
Humidity Effects on Experimental Compressor Performance-Corrected Conditions for Real Gases
,”
ASME J. Turbomach.
,
137
(
3
), p.
031011
.
49.
Belardini
,
E.
,
Rubino
,
D. T.
,
Tapinassi
,
L.
, and
Pelella
,
M.
,
2015
, “
Modeling of Pressure Dynamics During Surge and ESD
,”
Third Middle East Turbomachinery Symposium
(METS), Doha, Qatar, Feb 16–18.
50.
Gravdahl
,
J. T.
, and
Egeland
,
O.
,
Compressor Surge and Rotating Stall: Modeling and Control
,
Springer Science & Business Media
,
London
.
51.
Jiang
,
W.
,
Khan
,
J.
, and
Dougal
,
R. A.
, “
Dynamic Centrifugal Compressor Model for System Simulation
,”
J. Power Sources
,
158
(
2
), pp.
1333
1343
.
52.
Ferrara
,
E. G.
,
2013
, “
Characterization of Vaneless Diffuser Rotating Stall on Centrifugal Compressors for Industrial Applications
,”
Ph.D. thesis
, University of Florence, Florence, Italy.https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiDwc2JyO_VAhVi6oMKHQpOBfUQFggqMAA&url=https%3A%2F%2Fflore.unifi.it%2Fbitstream%2F2158%2F867715%2F1%2FThesis_PhD_2013_Biliotti_Davide.pdf&usg=AFQjCNGerCYXNdEKr4ZxKyzavh8P9KPp1Q
53.
Japikse
,
D.
,
1996
,
Centrifugal Compressor Design and Performance
,
Concepts ETI
,
Wilder, VT
.
54.
Lüdtke
,
K. H.
,
2013
,
Process Centrifugal Compressors: Basics, Function, Operation, Design, Application
,
Springer Science & Business Media
,
Berlin
.
55.
Gülich
,
J. F.
,
2008
,
Centrifugal Pumps
,
Springer
,
Berlin
.
56.
Tibboel
,
G. A.
,
2003
, “
Modification of a One-Dimensional Dynamic Compression System Model to Calculate Stage Characteristics Internally
,”
Masters thesis
, University of Tennessee, Knoxville, TN.http://trace.tennessee.edu/cgi/viewcontent.cgi?article=3686&context=utk_gradthes
57.
Casey
,
M.
, and
Robinson
,
C.
,
2013
, “
A Method to Estimate the Performance Map of a Centrifugal Compressor Stage
,”
ASME J. Turbomach.
,
135
(
2
), p.
021034
.
58.
Brun
,
K.
,
Simons
,
S.
,
Kurz
,
R.
,
Pinelli
,
M.
,
Morini
,
M.
, and
Munari
,
E.
,
2017
, “
Measurement and Prediction of Centrifugal Compressor Axial Forces During Surge—Part 1: Test and Force Measurement Results
,”
ASME
Paper No. GT2017-63061.
You do not currently have access to this content.