The present work summarizes the design process of a new continuous closed-loop hot transonic linear cascade. The facility features fully modular design which is intended to serve as a test bench for axial microturbomachinery components in independently varying Mach and Reynolds numbers ranges of 0–1.3 and 2 × 104–6 × 105, respectively. Moreover, for preserving heat transfer characteristics of the hot gas section, the gas to solid temperature ratio (up to 2) is retained. This operational environment has not been sufficiently addressed in prior art, although it is critical for the future development of ultra-efficient high power or thrust devices. In order to alleviate the dimension specific challenges associated with microturbomachinery, the facility is designed in a highly versatile manner and can easily accommodate different geometric configurations (pitch, ±20 deg stagger angle, and ±20 deg incidence angle), absence of any alterations to the test section. Owing to the quick swap design, the vane geometry can be easily replaced without manufacturing or re-assembly of other components. Flow periodicity is achieved by the inlet boundary layer suction and independently adjustable tailboard mechanisms. Enabling test-aided design capability for microgas turbine manufacturers, aerothermal performance of various advanced geometries can be assessed in engine relevant environments.

References

References
1.
Jouini
,
D.
,
Sjolander
,
S.
, and
Moustapha
,
S.
,
2000
, “
Aerodynamic Performance of a Transonic Turbine Cascade at Off-Design Conditions
,”
ASME
Paper No. 2000-GT-0482.
2.
Vogel
,
G.
,
2002
, “
Experimental Study on a Heavy Film Cooled Nozzle Guide Vane With Contoured Platforms
,”
Ph.D. thesis
, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland.https://infoscience.epfl.ch/record/103717
3.
Schreiber
,
H.-A.
,
Steinert
,
W.
, and
Küsters
,
B.
,
2000
, “
Effects of Reynolds Number and Free-Stream Turbulence on Boundary Layer Transition in a Compressor Cascade
,”
ASME
Paper No. 2000-GT-0263.
4.
Detemple-Laake
,
E.
,
1991
, “
Detailed Measurements of the Flow Field in a Transonic Turbine Cascade
,”
ASME
Paper No. 91-GT-029.
5.
Giel
,
P. W.
,
Boyle
,
R. J.
, and
Bunker
,
R. S.
,
2003
, “
Measurements and Predictions of Heat Transfer on Rotor Blades in a Transonic Turbine Cascade
,”
ASME
Paper No. GT2003-38839.
6.
Liu
,
C.
,
Zhu
,
H. R.
,
Fu
,
Z. Y.
, and
Xu
,
R. H.
,
2015
, “
The Effects of Inlet Reynolds Number, Exit Mach Number and Incidence Angle on Leading Edge Film Cooling Effectiveness of a Turbine Blade in a Linear Transonic Cascade
,”
ASME
Paper No. GT2015-42888.
7.
Woodason
,
R.
,
Asghar
,
A.
, and
Allan
,
W.
,
2009
, “
Assessment of the Flow Quality of a Transonic Turbine Cascade
,”
ASME
Paper No. GT2009-60164.
8.
Mack
,
M.
,
Niehuis
,
R.
,
Fiala
,
A.
, and
Guendogdu
,
Y.
,
2013
, “
Boundary Layer Control on a Low Pressure Turbine Blade by Means of Pulsed Blowing
,”
ASME J. Turbomach.
,
135
(
5
), p.
051023
.
9.
Mihelish
,
M.
, and
Ames
,
F.
,
2013
, “
The Development of a Closed Loop High Speed Cascade Wind Tunnel for Aerodynamic and Heat Transfer Testing at Moderate to Low Reynolds Numbers
,”
ASME
Paper No. GT2013-95048.
10.
Povey
,
T.
,
Oldfield
,
M.
, and
Haselbach
,
F.
,
2008
, “
Transonic Turbine Vane Tests in a New Miniature Cascade Facility
,”
Proc. Inst. Mech. Eng., Part A
,
222
(
5
), pp.
529
539
.
11.
Carullo
,
J.
,
Nasir
,
S.
,
Cress
,
R. D.
,
Ng
,
W. F.
,
Thole
,
K. A.
,
Zhang
,
L. J.
, and
Moon
,
H. K.
,
2011
, “
The Effects of Freestream Turbulence, Turbulence Length Scale, and Exit Reynolds Number on Turbine Blade Heat Transfer in a Transonic Cascade
,”
ASME J. Turbomach.
,
133
(
1
), p.
011030
.
12.
Paniagua
,
G.
,
Sieverding
,
C.
, and
Arts
,
T.
,
2013
, “
Review of the Von Karman Institute Compression Tube Facility for Turbine Research
,”
ASME
Paper No. GT2013-95984.
13.
Dixon
,
S. L.
, and
Hall
,
C.
,
2013
,
Fluid Mechanics and Thermodynamics of Turbomachinery
,
Butterworth-Heinemann
,
Oxford, UK
.
14.
Hirsch
,
C.
,
1993
, “
Advanced Methods for Cascade Testing
,” Specialised Printing Services Limited, Loughton, UK, No. AGARD-AG-328.
15.
White
,
F. M.
, and
Corfield
,
I.
,
2006
,
Viscous Fluid Flow
, Vol.
3
,
McGraw-Hill
,
New York
.
16.
Kenneth
,
E.
, and
Nichols
,
P.
,
2012
, “
How to Select Turbomachinery for Your Application
,”
Barber-Nichols Inc.
, Arvada, CO, pp.
5
6
.http://www.barber-nichols.com/sites/default/files/wysiwyg/images/how_to_select_turbomachinery_for_your_application.pdf
17.
Brassard
,
D.
, and
Ferchichi
,
M.
,
2005
, “
Transformation of a Polynomial for a Contraction Wall Profile
,”
ASME J. Fluids Eng.
,
127
(
1
), pp.
183
185
.
18.
Bell
,
J. H.
, and
Mehta
,
R. D.
,
1988
, “
Contraction Design for Small Low-Speed Wind Tunnels
,” Stanford University, Stanford, CA, Technical Report No.
NASA-CR-182747
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19880012661.pdf
19.
Al-Nassri
,
S.
, and
Unny
,
T.
,
1981
, “
Developing Laminar Flow in the Inlet Length of a Smooth Pipe
,”
Appl. Sci. Res.
,
36
(
5–6
), pp.
313
332
.
20.
So
,
R. M.
, and
Mellor
,
G. L.
,
1973
, “
Experiment on Convex Curvature Effects in Turbulent Boundary Layers
,”
J. Fluid Mech.
,
60
(
1
), pp.
43
62
.
21.
Rae
,
W. H.
, and
Pope
,
A.
,
1984
,
Low-Speed Wind Tunnel Testing
,
Wiley
,
Hoboken, NJ
.
22.
Mehta
,
R. D.
, and
Bradshaw
,
P.
,
1979
, “
Design Rules for Small Low Speed Wind Tunnels
,”
Aeronaut. J.
,
83
(
827
), pp.
443
453
.https://www.cambridge.org/core/journals/aeronautical-journal/article/design-rules-for-small-low-speed-wind-tunnels/600999B496885D7383AB1B04CFF9F4C0
23.
Fournier
,
R. L.
,
2011
,
Basic Transport Phenomena in Biomedical Engineering
,
CRC Press
,
Boca Raton, FL
.
24.
Loehrke
,
R.
, and
Nagib
,
H.
,
1976
, “
Control of Free-Stream Turbulence by Means of Honeycombs: A Balance Between Suppression and Generation
,”
ASME J. Fluids Eng.
,
98
(
3
), pp.
342
351
.
25.
Bernstein
,
D.
,
1953
, “
An Investigation of Pressure-Drop Coefficients for Orifice Plates and Honeycomb Grids
,”
MSc thesis
, Georgia Institute of Technology, Atlanta, GA.http://hdl.handle.net/1853/13065
26.
Scheiman
,
J.
,
1981
, “
Considerations for the Installation of Honeycomb and Screens to Reduce Wind-Tunnel Turbulence
,” NASA Langley Research Center, Hampton, VA, Report No.
NASA-TM-81868
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19810020599.pdf
27.
Aufderheide
,
T.
,
Bode
,
C.
,
Friedrichs
,
J.
, and
Kozulovic
,
D.
,
2014
, “
The Generation of Higher Levels of Turbulence in a Low-Speed Cascade Wind Tunnel by Pressurized Tubes
,”
VI European Conference on Computational Fluid Dynamics
(
ECFD
), Barcelona, Spain, July 20–25.http://congress.cimne.com/iacm-eccomas2014/admin/files/fileabstract/a2331.pdf
28.
Han
,
J.-C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
,
CRC Press
,
Boca Raton, FL
.
29.
Hylton
,
L.
,
Mihelc
,
M. S.
,
Turner
,
E. R.
,
Nealy
,
D. A.
, and
York
,
R. E.
,
1983
, “
Analytical and Experimental Evaluation of the Heat Transfer Distribution Over the Surfaces of Turbine Vanes
,” Detroit Diesel Allison, Indianapolis, IN, Report No.
NASA-CR-168015
.https://ntrs.nasa.gov/search.jsp?R=19830020105
30.
Hilditch
,
M. A.
,
Smith
,
G. C.
, and
Singh
,
U. K.
,
1998
, “
Unsteady Flow in a Single Stage Turbine
,”
ASME
Paper No. 98-GT-531.
31.
Goethert
,
B. H.
,
1961
, “
Transonic Wind Tunnel Testing
,” DTIC Document, Dover Publications, Mineola, NY.
32.
Paniagua
,
G.
,
Cuadrado
,
D.
,
Saavedra
,
J.
,
Andreoli
,
V.
,
Meyer
,
T.
,
Meyer
,
S.
, and
Lawrence
,
D.
,
2016
, “
Design of the Purdue Experimental Turbine Aerothermal Laboratory for Optical and Surface Aero-Thermal Measurements
,”
ASME
Paper No. GT2016-58101.
33.
Chue
,
S.
,
1975
, “
Pressure Probes for Fluid Measurement
,”
Prog. Aerosp. Sci.
,
16
(
2
), pp.
147
223
.
34.
Shiau
,
C.-C.
,
Chen
,
A. F.
,
Han
,
J. C.
,
Azad
,
S.
, and
Lee
,
C. P.
,
2015
, “
Full-Scale Turbine Vane End-Wall Film-Cooling Effectiveness Distribution Using PSP Technique
,”
ASME
Paper No. GT2015-42206.
35.
Bogard
,
D.
, and
Thole
,
K.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propul. Power
,
22
(
2
), pp.
249
270
.
36.
Flegel
,
A. B.
,
Welch
,
G. E.
,
Giel
,
P. W.
,
Ames
,
F. E.
, and
Long
,
J. A.
,
2015
, “
Complementary Aerodynamic Performance Datasets for Variable Speed Power Turbine Blade Section From Two Independent Transonic Turbine Cascades
,” International Symposium on Air Breathing Engines (ISABE), Phoenix, AZ, Oct. 25–30, Paper No.
ISABE 2015-20163
.https://ntrs.nasa.gov/search.jsp?R=20150022187
You do not currently have access to this content.