Sudden changes of flame shape are an undesired, yet poorly understood feature of swirl combustors used in gas turbines. The present work studies flame shape transition mechanisms of a bistable turbulent swirl flame in a gas turbine model combustor, which alternates intermittently between an attached V-form and a lifted M-form. Time-resolved velocity fields and two-dimensional flame structures were measured simultaneously using high-speed stereo-particle image velocimetry (PIV) and planar laser-induced fluorescence of OH (OH-PLIF) at 10 kHz. The data analysis is performed using two novel methods that are well adapted to the study of transient flame shape transitions: First, the linear stability analysis (LSA) of a time-varying mean flow and second, the recently proposed spectral proper orthogonal decomposition (SPOD). The results show that the transitions are governed by two types of instability, namely a hydrodynamic instability in the form of a precessing vortex core (PVC) and a thermoacoustic (TA) instability. The LSA shows that the V-M transition implies the transient formation of a PVC as the result of a self-amplification process. The V-M transition, on the other hand, is induced by the appearance of a TA instability that suppresses the PVC and thereby modifies the flowfield such that the flame re-attaches at the nozzle. In summary, these results provide novel insights into the complex interactions of TA and hydrodynamic instabilities that govern the shape of turbulent swirl-stabilized flames.

References

References
1.
Fritsche
,
D.
,
Füri
,
M.
, and
Boulouchos
,
K.
,
2007
, “
An Experimental Investigation of Thermoacoustic Instabilities in a Premixed Swirl-Stabilized Flame
,”
Combust. Flame
,
151
(
1–2
), pp.
29
36
.
2.
Biagioli
,
F.
,
Güthe
,
F.
, and
Schuermans
,
B.
,
2008
, “
Combustion Dynamics Linked to Flame Behaviour in a Partially Premixed Swirled Industrial Burner
,”
Exp. Therm. Fluid Sci.
,
32
(
7
), pp.
1344
1353
.
3.
Tummers
,
M.
,
Hübner
,
A.
,
van Veen
,
E.
,
Hanjalic
,
K.
, and
van der Meer
,
T.
,
2009
, “
Hysteresis and Transition in Swirling Nonpremixed Flames
,”
Combust. Flame
,
156
(
2
), pp.
447
459
.
4.
Renaud
,
A.
,
Ducruix
,
S.
,
Scouflaire
,
P.
, and
Zimmer
,
L.
,
2015
, “
Flame Shape Transition in a Swirl Stabilised Liquid Fueled Burner
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3365
3372
.
5.
Guiberti
,
T.
,
Durox
,
D.
,
Scouflaire
,
P.
, and
Schuller
,
T.
,
2015
, “
Impact of Heat Loss and Hydrogen Enrichment on the Shape of Confined Swirling Flames
,”
Proc. Combust. Inst.
,
35
(
2
), pp.
1385
1392
.
6.
Oberleithner
,
K.
,
Stöhr
,
M.
,
Seong
,
H. I.
,
Christoph
,
M. A.
, and
Steinberg
,
A. M.
,
2015
, “
Formation and Flame-Induced Suppression of the Precessing Vortex Core in a Swirl Combustor: Experiments and Linear Stability Analysis
,”
Combust. Flame
,
162
(
8
), pp.
3100
3114
.
7.
Arndt
,
C. M.
,
Steinberg
,
A. M.
,
Boxx
,
I. G.
,
Meier
,
W.
, and
Aigner
,
M.
,
2010
, “
Flow-Field and Flame Dynamics of a Gas Turbine Model Combustor During Transition Between Thermo-Acoustically Stable and Unstable States
,”
ASME
Paper No. GT2010-22830.
8.
Hermeth
,
S.
,
Staffelbach
,
G.
,
Gicquel
,
L. Y.
,
Anisimov
,
V.
,
Cirigliano
,
C.
, and
Poinsot
,
T.
,
2014
, “
Bistable Swirled Flames and Influence on Flame Transfer Functions
,”
Combust. Flame
,
161
(
1
), pp.
184
196
.
9.
An
,
Q.
,
Kwong
,
W. Y.
,
Geraedts
,
B. D.
, and
Steinberg
,
A. M.
,
2016
, “
Coupled Dynamics of Lift-Off and Precessing Vortex Core Formation in Swirl Flames
,”
Combust. Flame
,
168
, pp.
228
239
.
10.
Selle
,
L.
,
Lartigue
,
G.
,
Poinsot
,
T.
,
Koch
,
R.
,
Schildmacher
,
K.-U.
,
Krebs
,
W.
,
Prade
,
B.
,
Kaufmann
,
P.
, and
Veynante
,
D.
,
2004
, “
Compressible Large Eddy Simulation of Turbulent Combustion in Complex Geometry on Unstructured Meshes
,”
Combust. Flame
,
137
(
4
), pp.
489
505
.
11.
Freitag
,
M.
, and
Janicka
,
J.
,
2007
, “
Investigation of a Strongly Swirled Unconfined Premixed Flame Using LES
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
1477
1485
.
12.
De
,
A.
,
Zhu
,
S.
, and
Acharya
,
S.
,
2010
, “
An Experimental and Computational Study of a Swirl-Stabilized Premixed Flame
,”
ASME J. Eng. Gas Turbines Power
,
132
(
7
), p.
071503
.
13.
Stöhr
,
M.
,
Yin
,
Z.
, and
Meier
,
W.
,
2016
, “
Interaction Between Velocity Fluctuations and Equivalence Ratio Fluctuations During Thermoacoustic Oscillations in a Partially Premixed Swirl Combustor
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3907
3915
.
14.
Sieber
,
M.
,
Paschereit
,
C. O.
, and
Oberleithner
,
K.
,
2016
, “
Spectral Proper Orthogonal Decomposition
,”
J. Fluid Mech.
,
792
(
4
), pp.
798
828
.
15.
Holmes
,
P.
,
Lumley
,
J.
, and
Berkooz
,
G.
,
1998
,
Turbulence, Coherent Structures, Dynamical Systems and Symmetry
, (Cambridge Monographs on Mechanics),
Cambridge University Press
,
Cambridge, UK
.
16.
Oberleithner
,
K.
,
Sieber
,
M.
,
Nayeri
,
C. N.
,
Paschereit
,
C. O.
,
Petz
,
C.
,
Hege
,
H.-C.
,
Noack
,
B. R.
, and
Wygnanski
,
I.
,
2011
, “
Three-Dimensional Coherent Structures in a Swirling Jet Undergoing Vortex Breakdown: Stability Analysis and Empirical Mode Construction
,”
J. Fluid Mech.
,
679
, pp.
383
414
.
17.
Sieber
,
M.
,
Paschereit
,
C. O.
, and
Oberleithner
,
K.
,
2016
, “
Advanced Identification of Coherent Structures in Swirl-Stabilized Combustors
,”
ASME J. Eng. Gas Turbines Power
,
139
(
2
), p.
021503
.
18.
Gallaire
,
F.
,
Ruith
,
M.
,
Meiburg
,
E.
,
Chomaz
,
J.-M.
, and
Huerre
,
P.
,
2006
, “
Spiral Vortex Breakdown as a Global Mode
,”
J. Fluid Mech.
,
549
, pp.
71
80
.
19.
Juniper
,
M. P.
,
2012
, “
Absolute and Convective Instability in Gas Turbine Fuel Injectors
,”
ASME
Paper No. GT2012-68253.
20.
Tammisola
,
O.
, and
Juniper
,
M. P.
,
2016
, “
Coherent Structures in a Swirl Injector at Re = 4800 by Nonlinear Simulations and Linear Global Modes
,”
J. Fluid Mech.
,
792
(
3
), pp.
620
657
.
21.
Rukes
,
L.
,
Sieber
,
M.
,
Paschereit Oliver
,
C.
, and
Oberleithner
,
K.
,
2015
, “
Transient Evolution of the Global Mode in Turbulent Swirling Jets: Experiments and Modal Stability Analysis
,”
Eur. J. Mech. B-Fluids
,
65
, pp. 98–106.https://doi.org/10.1016/j.euromechflu.2017.02.010
22.
Mantič-Lugo
,
V.
,
Arratia
,
C.
, and
Gallaire
,
F.
,
2015
, “
A Self-Consistent Model for the Saturation Dynamics of the Vortex Shedding Around the Mean Flow in the Unstable Cylinder Wake
,”
Phys. Fluids
,
27
(
7
), p.
074103
.
23.
Khorrami
,
M. R.
,
Malik
,
M. R.
, and
Ash
,
R. L.
,
1989
, “
Application of Spectral Collocation Techniques to the Stability of Swirling Flows
,”
J. Comput. Phys.
,
81
(
1
), pp.
206
229
.
24.
Huerre
,
P.
, and
Monkewitz
,
P. A.
,
1990
, “
Local and Global Instabilities in Spatially Developing Flows
,”
Annu. Rev. Fluid Mech.
,
22
, pp.
473
537
.
25.
Chomaz
,
J. M.
,
Huerre
,
P.
, and
Redekopp
,
L. G.
,
1988
, “
Bifurcations to Local and Global Modes in Spatially Developing Flows
,”
Phys. Rev. Lett.
,
60
(
1
), pp.
25
28
.
26.
Chomaz
,
J.-M.
,
Huerre
,
P.
, and
Redekopp
,
L. G.
,
1991
, “
A Frequency Selection Criterion in Spatially Developing Flows
,”
Stud. Appl. Math.
,
84
(
2
), pp.
119
144
.
27.
Rukes
,
L.
,
Paschereit Oliver
,
C.
, and
Oberleithner
,
K.
,
2016
, “
An Assessment of Turbulence Models for Linear Hydrodynamic Stability Analysis of Strongly Swirling Jets
,”
Eur. J. Mech. B/Fluids
,
59
, pp.
205
218
.
28.
Stöhr
,
M.
,
Sadanandan
,
R.
, and
Meier
,
W.
,
2011
, “
Phase-Resolved Characterization of Vortex Flame Interaction in a Turbulent Swirl Flame
,”
Exp. Fluids
,
51
(
4
), pp.
1153
1167
.
29.
Terhaar
,
S.
,
Ćosić
,
B.
,
Paschereit
,
C.
, and
Oberleithner
,
K.
,
2016
, “
Suppression and Excitation of the Precessing Vortex Core by Acoustic Velocity Fluctuations: An Experimental and Analytical Study
,”
Combust. Flame
,
172
, pp.
234
251
.
30.
Yin
,
Z.
,
Nau
,
P.
, and
Meier
,
W.
,
2016
, “
Responses of Combustor Surface Temperature to Flame Shape Transitions in a Turbulent bi-Stable Swirl Flame
,”
Exp. Therm. Fluid Sci.
,
82
, pp.
50
57
.
31.
Terhaar
,
S.
,
Oberleithner
,
K.
, and
Paschereit
,
C.
,
2015
, “
Key Parameters Governing the Precessing Vortex Core in Reacting Flows: An Experimental and Analytical Study
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3347
3354
.
32.
Noack
,
B. R.
,
Afanasiev
,
K.
,
Morzyński
,
M.
,
Tadmor
,
G.
, and
Thiele
,
F.
,
2003
, “
A Hierarchy of Low-Dimensional Models for the Transient and Post-Transient Cylinder Wake
,”
J. Fluid Mech.
,
497
, pp.
335
363
.
33.
Barkley
,
D.
,
2006
, “
Linear Analysis of the Cylinder Wake Mean Flow
,”
Europhys. Lett
,
75
(
5
), pp.
750
756
.
34.
Moeck
,
J. P.
,
Bourgouin
,
J.-F.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2012
, “
Nonlinear Interaction Between a Precessing Vortex Core and Acoustic Oscillations in a Turbulent Swirling Flame
,”
Combust. Flame
,
159
(
8
), pp.
2650
2668
.
You do not currently have access to this content.