The present work studies the effect of entropy dispersion on the level of combustion noise at the turbine outlet of the Rolls-Royce ANTLE aero-engine. A new model for the decay of entropy waves, based on modeling dispersion effects, is developed and utilized in a low-order network model of the combustor (i.e., LOTAN code that solves the unsteady Euler equations). The proposed model for the dispersion of entropy waves only requires the mean velocity field as an input, obtained by Reynolds-averaged Navier–Stokes (RANS) computations of the demonstrator combustor. LOTAN is then coupled with a low-order model code (LINEARB) based on the semi-actuator disk model that studies propagation of combustion noise through turbine blades. Thus, by combining LOTAN and LINERAB, the combustion noise and its counterparts, direct and indirect noise, generated at the turbine exit are predicted. In comparison with experimental data, it is found that without the inclusion of entropy dispersion, the level of combustion noise at the turbine exit is overpredicted by almost 2 orders of magnitude. The introduction of entropy dispersion in LOTAN results in a much better agreement with the experimental data, highlighting the importance of entropy wave dispersion for the prediction of combustion noise in real engines. In more detail, the agreement with the experiment for high and low frequencies was very good. At intermediate frequencies, the experimental measurements are still overpredicted; however, the predicted noise is much smaller compared to the case without entropy dispersion. This discrepancy is attributed to (i) the role of turbulent mixing in the overall decay of the entropy fluctuations inside the combustor, not considered in the model developed for the decay of entropy waves, and (ii) the absence of a proper model in LINEARB for the decay of entropy waves as they pass through the turbine blade rows. These are areas that still need further development to improve the prediction of low-order network codes.

References

References
1.
Smith
,
M.
,
2004
,
Aircraft Noise
(Cambridge Aerospace Series),
Cambridge University Press
,
Cambridge, UK
.
2.
Strahle
,
W. C.
,
1972
, “
Some Results in Combustion Generated Noise
,”
J. Sound Vib.
,
23
(
1
), pp.
113
125
.
3.
Dowling
,
A. P.
, and
Mahmoudi
,
Y.
,
2015
, “
Combustion Noise
,”
Proc. Combust. Inst.
,
35
(
1
), pp.
65
100
.
4.
Strahle
,
W. C.
,
1978
, “
Combustion Noise
,”
Prog. Energy Combust. Sci.
,
4
(
3
), pp.
157
176
.
5.
Marble
,
F.
, and
Candel
,
S.
,
1977
, “
Acoustic Disturbance From Gas Non-Uniformities Convected Through a Nozzle
,”
J. Sound Vib.
,
55
(
2
), pp.
225
243
.
6.
Chu
,
B.-T.
, and
Kovásznay
,
L. S. G.
,
1958
, “
Non-Linear Interactions in a Viscous Heat-Conducting Compressible Gas
,”
J. Fluid Mech.
,
3
(
5
), pp.
494
514
.
7.
Richter
,
C.
,
Panek
,
Ł.
,
Krause
,
V.
, and
Thiele
,
F.
,
2009
,
Investigations Regarding the Simulation of Wall Noise Interaction and Noise Propagation in Swirled Combustion Chamber Flows
,
Springer
,
Berlin
, pp.
217
238
.
8.
Poinsot
,
T.
,
2016
, “
Prediction and Control of Combustion Instabilities in Real Engines
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
1
28
.
9.
Eckstein
,
J.
,
Freitag
,
E.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2004
, “
Experimental Study on the Role of Entropy Waves in Low-Frequency Oscillations in a RQL Combustor
,”
ASME J. Eng. Gas Turbines Power
,
128
(
2
), pp.
264
270
.
10.
Stow
,
S. R.
, and
Dowling
,
A. P.
,
2001
, “
Thermoacoustic Oscillations in an Annular Combustor
,”
ASME
Paper No. 2001-GT-0037.
11.
Sattelmayer
,
T.
,
2003
, “
The Interaction of Entropy Fluctuations With Turbine Blade Rows: A Mechanism of Turbojet Engine Noise
,”
ASME J. Eng. Gas Turbines Power
,
125
(
1
), pp.
11
19
.
12.
Morgans
,
A. S.
,
Goh
,
C. S.
, and
Dahan
,
J. A.
,
2013
, “
The Dissipation and Shear Dispersion of Entropy Waves in Combustor Thermoacoustics
,”
J. Fluid Mech.
,
733
, p. R2.
13.
Giusti
,
A.
,
Worth
,
N. A.
,
Mastorakos
,
E.
, and
Dowling
,
A. P.
,
2017
, “
Experimental and Numerical Investigation Into the Propagation of Entropy Waves
,”
AIAA J.
,
55
(
2
), pp.
446
458
.
14.
Wassmer
,
D.
,
Schuermans
,
B.
,
Paschereit
,
C. O.
, and
Moeck
,
J. P.
,
2016
, “
An Acoustic Time-of-Flight Approach for Unsteady Temperature Measurements: Characterization of Entropy Waves in a Model Gas Turbine Combustor
,”
ASME J. Eng. Gas Turbines Power
,
139
(
4
), p.
041501
.
15.
Motheau
,
E.
,
Nicoud
,
F.
, and
Poinsot
,
T.
,
2014
, “
Mixed Acoustic-Entropy Combustion Instabilities in Gas Turbines
,”
J. Fluid Mech.
,
749
, pp.
542
576
.
16.
Stow
,
S. R.
, and
Dowling
,
A. P.
,
2009
, “
A Time-Domain Network Model for Nonlinear Thermoacoustic Oscillations
,”
ASME J. Eng. Gas Turbines Power
,
131
(
3
), p.
031502
.
17.
Dowling
,
A. P.
, and
Stow
,
S. R.
,
2003
, “
Acoustic Analysis of Gas Turbine Combustors
,”
J. Propul. Power
,
19
(
5
), pp.
751
764
.
18.
Auer
,
L. H.
, and
Heasley
,
J. N.
,
1976
, “
An Alternative Formulation of the Complete Linearization Method for the Solution of Non-LTE Transfer Problems
,”
Astrophys. J.
,
205
, pp.
165
171
.
19.
Knobloch
,
K.
,
Guerin
,
S.
,
Holewa
,
A.
,
Mahmoudi-Larimi
,
Y.
,
Hynes
,
T.
, and
Bake
,
F.
,
2016
, “
Noise Transmission Characteristics of a High Pressure Turbine Stage
,”
AIAA
Paper No. 2016-3001.
20.
Liu
,
Y.
,
Dowling
,
A. P.
,
Swaminathan
,
N.
,
Morvant
,
R.
,
Macquisten
,
M. A.
, and
Caracciolo
,
L. F.
,
2014
, “
Prediction of Combustion Noise for an Aeroengine Combustor
,”
J. Propul. Power
,
30
(
1
), pp.
114
122
.
21.
Dowling
,
A. P.
,
Swaminathan
,
N.
,
Hynes
,
T.
, and
Mahmoudi-Larimi
,
Y.
,
2015
, “
Deliverable D4.3: Report on Analytical Prediction Tool and Comparison With Full-Scale Data
,” Technical Report of the RECORD project, University of Cambridge, Cambridge, UK.
22.
Stow
,
S. R.
,
Dowling
,
A. P.
, and
Hynes
,
T. P.
,
2002
, “
Reflection of Circumferential Modes in a Choked Nozzle
,”
J. Fluid Mech.
,
467
, pp.
215
239
.
23.
Hirsch
,
C.
,
Wsle
,
J.
,
Winkler
,
A.
, and
Sattelmayer
,
T.
,
2007
, “
A Spectral Model for the Sound Pressure From Turbulent Premixed Combustion
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
1435
1441
.
24.
Swaminathan
,
N.
,
Xu
,
G.
,
Dowling
,
A. P.
, and
Balachandran
,
R.
,
2011
, “
Heat Release Rate Correlation and Combustion Noise in Premixed Flames
,”
J. Fluid Mech.
,
681
, pp.
80
115
.
25.
Swaminathan
,
N.
,
Balachandran
,
R.
,
Xu
,
G.
, and
Dowling
,
A.
,
2011
, “
On the Correlation of Heat Release Rate in Turbulent Premixed Flames
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
1533
1541
.
26.
Cumpsty
,
N. A.
, and
Marble
,
F. E.
,
1977
, “
The Interaction of Entropy Fluctuations With Turbine Blade Rows; A Mechanism of Turbojet Engine Noise
,”
Proc. R. Soc. London A
,
357
(
1690
), pp.
323
344
.
You do not currently have access to this content.